

UN I
BASEL

Departement Physik Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet $2 / 28.09 .2020$

Solutions

Exercise 6.

The cyclists need an hour till they reach each other, since each has a speed of $16 \mathrm{~km} / \mathrm{h}$ both ride the bike for 16 km . Accordingly, the bee is flying for one hour back and forth. Since the bee has a velocity of $40 \mathrm{~km} / \mathrm{h}$ it will fly during this one hour 40 km .

Exercise 7.

The distance of the boat from the landing stage at the time of the jump, $t=0$, is $e=10 \mathrm{~m}$. The length of the boat is $l=5 \mathrm{~m}$. We choose the origin of the coordinate system to be where ' 007 ' jumps, this is at the edge of the landing stage. Therefore the level of the 'landing place' is $y_{0}=-3.5 \mathrm{~m}$.
First we calculate the time of flight with the equation for vertical motion (free fall):

$$
y_{0}=-1 / 2 g t_{0}^{2} \Rightarrow t_{0}=\sqrt{2 y_{0} / g}
$$

The distance s_{b} which the boat covers during this time is given by

$$
s_{b}=v \cdot t_{0}
$$

Thus the minimal horizontal flight path is:

$$
s_{\min }=e+v \cdot t_{0}
$$

In this case, the motorbike is landing with the center just on the stern(end) of the boat. The maximal horizontal flight path is given by:

$$
s_{\max }=e+l+v \cdot t_{0}
$$

In this case, the motorbike is landing with the center on the bow (forward part) of the boat. Resulting for the constant horizontal velocity:

$$
v_{\min }=s_{\min } / t_{0}=73 \mathrm{~km} / \mathrm{h} \quad \text { and } \quad v_{\max }=s_{\max } / t_{0}=94 \mathrm{~km} / \mathrm{h}
$$

The speed of James Bond has to be between $73 \mathrm{~km} / \mathrm{h}$ and $94 \mathrm{~km} / \mathrm{h}$.

Exercise 8.

General:

$$
v=\dot{s}=\frac{d s}{d t} \quad \text { and } \quad a=\ddot{s}=\frac{d^{2} s}{d t^{2}}
$$

The derivative of a vector has to be calculated for each component:

$$
\begin{array}{ll}
\dot{x}(t)=v_{x}(t)=-r \omega \cdot \sin (\omega t) & \ddot{x}(t)=a_{x}(t)=-r \omega^{2} \cdot \cos (\omega t) \\
\dot{y}(t)=v_{y}(t)=r \omega \cdot \cos (\omega t) & \ddot{y}(t)=a_{y}(t)=-r \omega^{2} \cdot \sin (\omega t) \\
\dot{z}(t)=v_{z}(t)=v_{z} & \ddot{z}(t)=a_{z}(t)=0
\end{array}
$$

(a) So the absolute value for the velocity is:

$$
\begin{aligned}
|v(t)| & =\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}=\sqrt{r^{2} \omega^{2} \sin ^{2}(\omega t)+r^{2} \omega^{2} \cos ^{2}(\omega t)+v_{z}^{2}} \\
& =\sqrt{r^{2} \omega^{2} \underbrace{\left(\sin ^{2}(\omega t)+\cos ^{2}(\omega t)\right)}_{=1}+v_{z}^{2}}=\sqrt{r^{2} \omega^{2}+v_{z}^{2}}=6.28 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) And the absolute value for the acceleration is:

$$
\begin{aligned}
|a(t)| & =\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}=\sqrt{r^{2} \omega^{4} \cos ^{2}(\omega t)+r^{2} \omega^{4} \sin ^{2}(\omega t)+0} \\
& =\sqrt{r^{2} \omega^{4} \underbrace{\left(\sin ^{2}(\omega t)+\cos ^{2}(\omega t)\right)}_{=1}}=\sqrt{r^{2} \omega^{4}}=39.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Exercise 9.

(a) Centripetal acceleration $\left(a_{r}=a_{c}\right): a_{c}=v_{1}^{2} / r$. The centripetal acceleration has the biggest value at the point where the vehicle is exiting the curve, due to that the final velocity is:

$$
v_{1}=\sqrt{a_{c} r}=13.89 \mathrm{~m} / \mathrm{s}=50 \mathrm{~km} / \mathrm{h}
$$

(b) The total acceleration \vec{a} is composed of the centripetal $\overrightarrow{a_{c}}$ and the tangential $\overrightarrow{a_{t}}$ acceleration, see

figure. So it is necessary to determine the tangential acceleration. Since the acceleration has the biggest value at the exit of the curve only this point needs to be investigated. The covered distance s_{1} is:

$$
s_{1}=\frac{1}{2} a_{t} t^{2}+v_{0} t
$$

The velocity v_{1} is:

$$
v_{1}=a_{t} t+v_{0}
$$

solve the equation for t and substitute t into s_{1} :

$$
\begin{gathered}
t=\frac{v_{1}-v_{0}}{a_{t}} \\
s_{1}=\frac{1}{2} a_{t} \frac{v_{1}^{2}-2 v_{1} v_{0}+v_{0}^{2}}{a_{t}^{2}}+\frac{v_{0} v_{1}-v_{0}^{2}}{a_{t}}=\frac{v_{1}^{2}-v_{0}^{2}}{2 a_{t}}
\end{gathered}
$$

out of this and by knowing the tangential acceleration it is possible to calculate the speed:

$$
v_{1}=\sqrt{v_{0}^{2}+2 a_{t} s_{1}}
$$

or the tangential acceleration, by using $s_{1}=\frac{1}{4} 2 \pi r$:

$$
a_{t}=\frac{v_{1}^{2}-v_{0}^{2}}{2 s_{1}}=\frac{v_{1}^{2}-v_{0}^{2}}{\pi r}=0.787 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The absolute value of the total acceleration \vec{a} therefor is:

$$
a=\sqrt{a_{c}^{2}+a_{t}^{2}}=3.94 \mathrm{~m} / \mathrm{s}^{2} \quad \tan \alpha=\frac{a_{c}}{a_{t}} \quad \Rightarrow \quad \alpha=78.5^{\circ}
$$

Exercise 10.

The following considerations are only true if no friction is present. The velocities at D are equal, since the distance and the experienced acceleration is the same for both paths. In the path $1(\mathrm{ABD})$: the sphere accelerates from A to B slowly since the inclination is small. In the $v(t)$ plot it is represented by a line with a small slope and accordingly a long time passes till the sphere reaches B . By a free fall the sphere reaches D starting from B, so it gets accelerated from a low velocity to a high. Correspondingly the slope of the line is steep in the $v(t)$-diagram.

Path 2 (ACD): the free fall occurs first, so the sphere gets rapidly accelerated and reaches C at a high velocity. The acceleration from C to D is small but due to the high velocity the distance is covered fast.

