

UN I
BASEL

Departement Physik
Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students
of Biology, Pharmacy and Geoscience

Sheet 3 / 5.10.2020

Solutions

Exercise 11.

First, a parallelogram of forces is formed by moving F_{1} or F_{2} parallel, resulting in a triangle of F_{1}, F_{2} and the total force F_{g}.

The angle γ can be calculated by:

$$
\gamma=180^{\circ}-\alpha-\beta=180^{\circ}-45^{\circ}-60^{\circ}=75^{\circ}
$$

According to the sine theorem it follows:

$$
\frac{F_{1}}{\sin \beta}=\frac{F_{2}}{\sin \alpha}=\frac{F_{g}}{\sin \gamma}
$$

Therefore:

$$
\begin{aligned}
& F_{1}=F_{g} \frac{\sin (\beta)}{\sin (\gamma)}=0.5 \mathrm{~kg} \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2} \cdot \frac{\sin \left(60^{\circ}\right)}{\sin \left(75^{\circ}\right)}=4.4 \mathrm{~N} \\
& F_{2}=F_{g} \frac{\sin (\alpha)}{\sin (\gamma)}=0.5 \mathrm{~kg} \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2} \cdot \frac{\sin \left(45^{\circ}\right)}{\sin \left(75^{\circ}\right)}=3.6 \mathrm{~N}
\end{aligned}
$$

Exercise 12.

a) The total system of masses m_{1} and m_{2} is accelerated by the difference in the downhill forces of each individual car. It follows:

$$
F_{D 1}=F_{G} \cdot \sin \alpha=100 \mathrm{~kg} \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2} \cdot \sin 20^{\circ}=335.52 \mathrm{~N}
$$

and

$$
F_{D 2}=F_{G} \cdot \sin 2 \alpha=100 \mathrm{~kg} \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2} \cdot \sin 40^{\circ}=630.57 \mathrm{~N}
$$

So, the acceleration of the cars is:

$$
a=\frac{\left(F_{D 2}-F_{D 1}\right)}{m}=\frac{(630.57 \mathrm{~N}-335.52 \mathrm{~N})}{200 \mathrm{~kg}}=1.48 \mathrm{~m} / \mathrm{s}^{2}
$$

b) For $\Delta t=10 \mathrm{~s}$:

$$
v=a \cdot \Delta t=14.8 \mathrm{~m} / \mathrm{s}
$$

Exercise 13.

(a) For the uniformly accelerated movement applies:

$$
s(t)=0.5 \cdot a \cdot t^{2}
$$

For free fall, the fall height h corresponds to the distance and the gravitational constant g to the acceleration. So:

$$
h(t)=0.5 \cdot g \cdot t^{2}
$$

Therefore for t follows:

$$
t(h)=\sqrt{\frac{2 h}{g}}
$$

(b) Inserting results in:

$$
t(1 \mathrm{~m})=\sqrt{\frac{2 \cdot 1 \mathrm{~m}}{1.62 \mathrm{~m} / \mathrm{s}^{2}}}=1.11 \mathrm{~s}
$$

(c) The velocity is:

$$
v=a t=g \sqrt{\frac{2 h}{g}}=\sqrt{2 h g}=\sqrt{2 \cdot 1 \mathrm{~m} \cdot 1.62 \mathrm{~m} / \mathrm{s}^{2}}=1.8 \mathrm{~m} / \mathrm{s}
$$

Exercise 14.

(a) The geostationary orbit has to rotate with the same angular velocity around the Earth as the Earth itself is rotating.

$$
\omega=\frac{2 \pi}{86400}=7.27 \cdot 10^{-5} \quad \frac{1}{\mathrm{~s}}
$$

The satellite just stays on a circular path if the centrifugal force F_{C} (script 103-7) is equal the gravitational force F_{G} (script 103-5):

$$
\begin{array}{r}
F_{C}=F_{G} \\
m \omega^{2} r=\gamma \frac{m M}{r^{2}} \\
\omega^{2} r=\gamma \frac{M}{r^{2}}
\end{array}
$$

m mass of the satellite
M mass of the Earth
γ constant of gravitation
r distance to the center of the Earth
from this it follows that the distance to the Earth's center is:

$$
r=\sqrt[3]{\frac{\gamma M}{\omega^{2}}}=42300 \mathrm{~km}
$$

and the distance to the Earth's surface is therefore 36000 km .
(b) The orbital plane of the satellite has to go through the Earth's center. In the cross sectional view with the Earth's surface, it is a great circle. The satellite is really geostationary only if the great circle is at the equator. Otherwise, the satellite would oscillate with a period of one day between northern and southern hemisphere.

Exercise 15.

Reagarding to the conversation of rotational momentum it is:

$$
L_{\text {before }}=L_{\text {after }}
$$

With respect to the moments of inertia and the angular velocity this results in:

$$
J_{\text {before }} \cdot \omega_{\text {before }}=J_{\text {after }} \cdot \omega_{\text {after }}
$$

After inserting, it follows:

$$
\frac{2}{5} m_{\text {earth }} r_{\text {before }}^{2} \cdot \frac{2 \pi}{T_{\text {before }}}=\frac{2}{5} m_{\text {earth }} r_{\text {after }}^{2} \cdot \frac{2 \pi}{T_{\text {after }}}
$$

Cancelling results in:

$$
\frac{r_{\text {before }}^{2}}{T_{\text {before }}}=\frac{r_{\text {after }}^{2}}{T_{\text {after }}}
$$

Therefore:

$$
T_{\mathrm{after}}=T_{\text {before }} \cdot \frac{r_{\text {after }}^{2}}{r_{\text {before }}^{2}}
$$

We know, that $r_{\text {after }}=0.6 \cdot r_{\text {before }}$. So, it follows:

$$
T_{\text {after }}=T_{\text {before }} \cdot 0.6^{2}=24 \mathrm{~h} \cdot 0.36=8.64 \mathrm{~h}
$$

