

## Departement Physik Universität Basel

Prof. D. Zumbühl & Prof. M. Calame Contact person: Miguel J. Carballido miguel.carballido@unibas.ch

Office: 1.12

Tel.: +41 (0)61 207 36 91 L http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

## for Students

# of Biology, Pharmacy and Geoscience

Sheet 4 / 12.10.2020

## Solutions

#### Exercise 16.

The force can be calculated by using the cosine theorem:

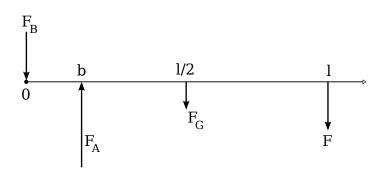
$$F_R = \sqrt{(4000 \text{ N})^2 + (7000 \text{ N})^2 + 2 \cdot 4000 \text{ N} \cdot 7000 \text{ N} \cdot \cos 120^\circ} = 6083 \text{ N}$$

## Exercise 17.

1) No equilibrium  $(M_{tot} \neq 0)$ ; 2) equilibrium  $(M_{tot} = 0)$ ; 3) no equilibrium  $(F_{tot} \neq 0)$ ; 4) no equilibrium  $(M_{tot} \neq 0)$ .

## Exercise 18.

a)



b) The condition for a force equilibrium is:

$$F_A - F_B - Mq - mq = 0$$

The condition for a torque equilibrium acting on position B is:

$$F_A b - \frac{l}{2} Mg - mgl = 0$$

and from this  $F_A$  and  $F_B$  it can be calculated:

$$F_A = \frac{l}{b} \left( mg + \frac{1}{2} Mg \right) = 415.9 \text{ N}$$
  
 $F_B = F_A - (mg + Mg) = 286.4 \text{ N}$ 

## Exercise 19.

On the object with the weight mg acting in the direction of the motion, the down-hill slope force  $F_H = mg \sin \alpha$  and in the opposite direction the friction force  $F_R = \mu F_N$  with the normal force  $F_N = mg \cos \alpha$ . If  $F_H$  is greater than  $F_R$ , then the object will slide downwards. The accelerating force is then:

$$F_H - F_R = mg(\sin \alpha - \mu \cos \alpha) = ma$$

resulting in the coefficient of sliding friction:

$$\mu = \frac{\sin \alpha - (a/g)}{\cos \alpha} = 0.20$$

In the limiting case where  $F_H = F_R$  (stiction), at  $\alpha = \beta_0$  (friction angle), is  $\mu_0 = \tan \beta_0 = 0.36$ .

#### Exercise 20.

a) The kinetic friction on a horizontal plane is:

$$F = ma$$
 and  $F_R = \mu_a F_N = \mu_a mg$ 

In the case where the system is in motion, the mass M which needs to be moved is composed of the two individual masses  $m_1$  and  $m_2$ :

$$M = m_1 + m_2$$

The effective acceleration is:

$$a = \frac{F - F_R}{M} = \frac{F}{M} - \mu_g g$$

b)  $F_1$ : only mass  $m_1$ 

$$F_1 = m_1 a + \mu_a m_1 g$$

$$F_1 = m_1(\frac{F}{M} - \mu_g g) + \mu_g m_1 g$$
$$F_1 = \frac{m_1 F}{M}$$