

UN I
BASEL

Departement Physik
Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 4 / 12.10.2020

Solutions

Exercise 16.

The force can be calculated by using the cosine theorem:

$$
F_{R}=\sqrt{(4000 \mathrm{~N})^{2}+(7000 \mathrm{~N})^{2}+2 \cdot 4000 \mathrm{~N} \cdot 7000 \mathrm{~N} \cdot \cos 120^{\circ}}=6083 \mathrm{~N}
$$

Exercise 17.

1) No equilibrium $\left(M_{t o t} \neq 0\right)$;
2) equilibrium $\left(M_{t o t}=0\right)$;
$3)$ no equilibrium $\left(F_{\text {tot }} \neq 0\right)$;
3) no equilibrium $\left(M_{t o t} \neq 0\right)$.

Exercise 18.

a)

b) The condition for a force equilibrium is :

$$
F_{A}-F_{B}-M g-m g=0
$$

The condition for a torque equilibrium acting on position B is:

$$
F_{A} b-\frac{l}{2} M g-m g l=0
$$

and from this F_{A} and F_{B} it can be calculated:

$$
\begin{aligned}
F_{A} & =\frac{l}{b}\left(m g+\frac{1}{2} M g\right) \\
F_{B} & =415.9 \mathrm{~N} \\
F_{A}-(m g+M g) & =286.4 \mathrm{~N}
\end{aligned}
$$

Exercise 19.

On the object with the weight $m g$ acting in the direction of the motion, the down-hill slope force $F_{H}=m g \sin \alpha$ and in the opposite direction the friction force $F_{R}=\mu F_{N}$ with the normal force $F_{N}=m g \cos \alpha$. If F_{H} is greater than F_{R}, then the object will slide downwards. The accelerating force is then:

$$
F_{H}-F_{R}=m g(\sin \alpha-\mu \cos \alpha)=m a
$$

resulting in the coefficient of sliding friction:

$$
\mu=\frac{\sin \alpha-(a / g)}{\cos \alpha}=0.20
$$

In the limiting case where $F_{H}=F_{R}$ (stiction), at $\alpha=\beta_{0}$ (friction angle), is $\mu_{0}=\tan \beta_{0}=0.36$.

Exercise 20.

a) The kinetic friction on a horizontal plane is:

$$
F=m a \quad \text { and } \quad F_{R}=\mu_{g} F_{N}=\mu_{g} m g
$$

In the case where the system is in motion, the mass M which needs to be moved is composed of the two individual masses m_{1} and m_{2} :

$$
M=m_{1}+m_{2}
$$

The effective acceleration is:

$$
a=\frac{F-F_{R}}{M}=\frac{F}{M}-\mu_{g} g
$$

b) F_{1} : only mass m_{1}

$$
\begin{gathered}
F_{1}=m_{1} a+\mu_{g} m_{1} g \\
F_{1}=m_{1}\left(\frac{F}{M}-\mu_{g} g\right)+\mu_{g} m_{1} g \\
F_{1}=\frac{m_{1} F}{M}
\end{gathered}
$$

