

Departement Physik Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido miguel.carballido@unibas.ch
Office: 1.12
U N I Tel.: +41 (0)61 2073691
B A S EL

# Exercises and Complements for the Introduction to Physics I 

## for Students

## of Biology, Pharmacy and Geoscience

Sheet 5 / 19.10.2020

## Solutions

## Exercise 21.

At the height of $h=2000 \mathrm{~m}$ the potential and the kinetic energy are equal:

$$
m g h=\frac{m v^{2}}{2} \quad \Rightarrow \quad v=\sqrt{2 g h}=198 \mathrm{~m} / \mathrm{s}
$$

The initial velocity is described by:

$$
v=\sqrt{-2 g h+v_{0}^{2}} \quad \Rightarrow \quad v_{0}=\sqrt{2} v=280 \mathrm{~m} / \mathrm{s}
$$

## Exercise 22.

Lifting and friction work have to be performed. The first one is given by $m g h$, and the second one by $\mu F_{N} s$, where $F_{N}=m g \cos \alpha$ is the normal force and $s=h / \sin \alpha$ is the distance of the path on the inclined plane is:

$$
\begin{aligned}
W & =m g h+\mu m g h \frac{\cos \alpha}{\sin \alpha}=m g h(1+\mu \cot \alpha) \\
& =m g s(\sin \alpha+\mu \cos \alpha)=61.85 \mathrm{~kJ}
\end{aligned}
$$

The lifting work depends only on the difference in height $h$ from the starting and the final position of the movement. The frictional work depends on the actual covered distance $s$. The gravitational force is conservative and the frictional force is non-conservative.

## Exercise 23.

a) Sketch:

b) The energy at the end of the movement $E_{E}$ is equal to the kinetic energy $E_{A}$, at the beginning, minus the loss due to the friction:

$$
\begin{gathered}
E_{E}=E_{A} \pm W_{+,-} \\
m g \Delta h=0+\frac{k}{2} \Delta s^{2}-m g \mu\left(s_{1}+\Delta s\right)-m g \mu \cos \alpha \frac{\Delta h}{\sin \alpha} \\
\Delta h=\frac{\frac{k}{2} \Delta s^{2}-m g \mu\left(s_{1}+\Delta s\right)}{m g(1+\mu \cot \alpha)}=1.65 \mathrm{~m}
\end{gathered}
$$

## Exercise 24.

For the initial velocity of the object it follows from the law of conservation of momentum:

$$
v_{0}=\frac{m_{B} v}{m_{Z}+m_{B}}
$$

The height (see figure) can be calculated from the law of energy conservation:

$$
\frac{\left(m_{Z}+m_{B}\right) v_{0}^{2}}{2}=\left(m_{Z}+m_{B}\right) g h \quad \Rightarrow \quad h=\frac{v_{0}^{2}}{2 g}
$$

In conclusion:

$$
\cos \alpha=1-\frac{h}{l}=1-\frac{m_{B}^{2} v^{2}}{\left(m_{Z}+m_{B}\right)^{2} 2 g l} \quad \Rightarrow \quad \alpha=73^{\circ}
$$

## Exercise 25.

a) System is in equilibrium, so nothing happens.
b) We zero the total energy in the resting state $=0$ (any other value or constant is also possible since it gets later canceled out anyway). If the mass $m_{1}$ moves downwards by the distance $x$, then:

$$
\begin{gathered}
m_{1} g x-m_{2} g x+\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2} \dot{x}^{2}=0 \\
2 g\left(m_{2}-m_{1}\right) x=\left(m_{1}+m_{2}\right) \dot{x}^{2} \\
2 g \frac{m_{2}-m_{1}}{m_{1}+m_{2}} x=\dot{x}^{2}
\end{gathered}
$$

The derivative with respect to the time is:

$$
2 g \frac{m_{2}-m_{1}}{m_{1}+m_{2}} \dot{x}=2 \dot{x} \ddot{x}
$$

Divide by $\dot{x}, \dot{x} \neq 0$

$$
\ddot{x}=a=g \frac{m_{2}-m_{1}}{m_{1}+m_{2}}
$$

## Alternative solution:

$$
\begin{aligned}
Z-m_{1} g & =m_{1} a \\
m_{2} g-Z & =m_{2} a
\end{aligned}
$$

with $Z$ as tension force. Since the wheel has no friction, the value of the tension force in the rope is the same. Consequently we obtain the same result:

$$
a=g \frac{m_{2}-m_{1}}{m_{1}+m_{2}}
$$

