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Exercise 26.

(a) In this case the equations for an elastic collision are valid, according to them the velocity is
given by: v′1 = −v′2. The negative sign indicates that the objects are moving in opposite directions.
From the equations (4-5) and (4-6) in Trautwein page 39 it results for v′1 and v′2:

(m1 −m2)v1 + 2m2v2
m1 +m2

=
(m2 −m1)v2 + 2m1v1

m1 +m2

(m1 −m2)v1 + 0

m1 +m2

=
0 + 2m1v1
m1 +m2

(m1 −m2)v1
m1 +m2

=
2m1v1
m1 +m2

(m1 +m2)v1 = −2m1v1

m1v1 −m2v1 = −2m1v1

−m2v1 = −3m1v1

m2 = 3m1

⇒ m2 = 6 kg

(b) According to the previous equation it follows:

v′1 =
(m1 −m2)v1 + 2m2v2

m1 +m2

⇒ v′1 = −3.35 m/s

Since v′1 = −v′2 the velocity of the second object is v′2 = 3.35 m/s. It is also possible to calculate v′2
directly from the equation for v′2 mentioned in (a). The absolute value of the velocity for both objects
is 3.35 m/s.



Exercise 27.

The correct answer to the first question is a) and to the second question b).

In both cases, the momentum of the ball changes when it hits the block. Before the impact, both
impulses are the same, but after the impact they are different because the rubber ball performs an
elastic collision, i.e. rebounds, while the aluminium ball inelastically deforms the block. The mo-
mentum of the aluminium ball is completely transferred to the block, which provides the necessary
impulse to stop it. In the case of the rubber ball, however, the impulse transmitted from the block
is greater, since the block not only has to deliver the impulse to stop the ball, but also an additional
impulse to throw the ball back. Therefore, the rubber ball is much more likely to knock the block over.

In the second part of the question, the rubber ball transmits the greatest momentum to the block,
but does not deliver the most energy. If the ball rebounds at a fairly high speed, it means that it
retains a lot of kinetic energy, while the aluminium ball stops and therefore releases all of the kinetic
energy as deformation work.

Therefore, the rubber ball gives off a lot of momentum but only a little bit of energy to the block,
while the aluminium ball gives a lot more energy but less momentum to the block.

So, it is essential to distinguish between momentum and energy.

Exercise 28.

The common velocity v′ of the vehicles after the crash (inelastic collision) results from the law of
conservation of momentum:

m1v1 +m2v2 = (m1 +m2)v
′ then v′ =

m1v1 +m2v2
m1 +m2

The energy which gets transformed into heat in this process is:
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m1v
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2
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2
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(a) Given in the problem was that: m1 = m2 = m, v1 = v and v2 = −v. From this it follows v′ = 0
and ∆E = mv2, i.e. the original available energy of the vehicles Ekin = 2 · (mv2/2) is completely
used for the deformation of the vehicles.
(b) In this case it was given that v1 = 2v and v2 = 0. Under these conditions the original available
kinetic energy is (m/2)(2v)2 = 2mv2, twice as much as in (A). From this, it follows that v′ = v
and ∆E = mv2. Accordingly the same amount of the kinetic energy is used for the deformation as
in (a). Since the initial energy was higher, after the collision each vehicle has a kinetic energy of mv2/2.

Exercise 29.

Due to the conservation of angular momentum it is necessary that the momenta for the outstreched
arms L0 = J0ω0 and with the arms closer to the body L1 = J1ω1 have to be equal, L0 = L1.
By solving this we obtain ω1 = ω0 · J0J1 .

For the moments of inertia we calculate:

J0 = JP + JC + 2mr20 = 1.95 kg ·m2 + 0.27 kg ·m2 + 2 · 2 kg · (0.75 m)2



and
J1 = JP + JC + 2mr21 = 1.95 kg ·m2 + 0.27 kg ·m2 + 2 · 2 kg · (0.1 m)2

and with ω0 = 1 π
s

we obtain ω1 ≈ 2 π
s
.

Exercise 30.

(a) The centripetal force acting on the dust particle can be calculated by:

FZ = mrω2 = 4π2 ·m · r · f 2 = 4π2 · 10−5 kg · 0.06 m · (100 Hz)2 = 0.24 N

(b) The rotational energy can be estimated by:

Erot =
1

2
· J · ω2

Since the CD can be considered as a flat square cuboid, the moment of inertia can be calculated by:

JCD =
1

2
·m · r2

Therefore Erot is:

Erot =
1

2
· 1

2
·m · r2 · 4π2f 2 = mr2π2f 2 = 5.33 J

(c) The angular momentum of the CD can be calculated by:

LCD = Jω =
1

2
mr2 · 2πf = 0.015 kg · (0.06 m)2 · π · 100 Hz = 0.02

kg m2

s

(d) Because of the conservation of angular momentum, the angular momentum of the CD LCD is
equal to that of the player LPlayer.

LCD = LPlayer

This results in:
LCD
JPlayer

= 2πfPlayer

The moment of inertia of the player can be seen as a cuboid:

JPlayer =
1

12
·m · (a2 + b2)

Therefore, the frequency of the player is:

fPlayer =
LCD

2π · 1
12
· 0.5 kg · [(0.15 m)2 + (0.15 m)2]

= 1.44 Hz


