

Departement Physik
Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
U N I Tel.: +41 (0)61 2073691
BASEL

Exercises and Complements for the Introduction to Physics I

for Students of Biology, Pharmacy and Geoscience

Exercise 31.

Since the two pistons are at the same height, the pressure of the liquid at both pistons (when the system is in equilibrium) is the same:

$$
p=\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

with

$$
F_{2}=\left(m+m_{K}\right) g \quad \text { follows } \quad F_{1}=\left(m+m_{K}\right) g \frac{A_{1}}{A_{2}}=87.2 \quad \mathrm{~N}
$$

Exercise 32.

From the capillary law (script 107-9) it follows that:

$$
\sigma_{1,3}-\sigma_{1,2}=\sigma_{2,3} \cos \theta
$$

where $\sigma_{2,3}=\sigma$ is the surface tension of water towards air/vapor. Using this result and substituting it in the formula for calculating the height of the liquid column it follows:

$$
\begin{gathered}
r=\frac{2\left(\sigma_{1,3}-\sigma_{1,2}\right)}{h g \rho}=\frac{2 \sigma \cos \theta}{h g \rho}=1.13 \quad \mu \mathrm{~m} \\
d=2 r=2.26 \quad \mu \mathrm{~m}
\end{gathered}
$$

Exercise 33.

(a) In general, according to Bernoulli:

$$
p_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{3}+\rho g h_{3}+\frac{1}{2} \rho v_{3}^{2}=\text { const }
$$

For this exercise: $p_{1}=p_{3}=$ the pressure of air, $h_{1}=0, h_{3}=h_{r}+h_{w}, \rho$ density of water, and $v_{3}=0$ (velocity at point 3 , see figure) since the level of the water is constant.

$$
\frac{1}{2} \rho v_{1}^{2}=\rho g\left(h_{r}+h_{w}\right) \quad \Rightarrow \quad v_{1}=\sqrt{2 g\left(h_{r}+h_{w}\right)}=16.57 \mathrm{~m} / \mathrm{s}
$$

(b) Due to the equation of continuity, it follows:

$$
v_{2} A_{2}=v_{1} A_{1} \quad \text { with } \quad A_{i}=\pi\left(\frac{d_{i}}{2}\right)^{2}
$$

where A_{i} is the cross section at the corresponding position. From this it follows:

$$
v_{2} d_{2}^{2}=v_{1} d_{1}^{2} \quad \Rightarrow \quad v_{2}=7.36 \mathrm{~m} / \mathrm{s}
$$

(c) Using again the Bernoulli equation:

$$
p_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}=p_{3}+\rho g h_{3}+\frac{1}{2} \rho v_{3}^{2}=\text { const }
$$

Here: $p_{3}=p_{0}=$ pressure of air, $h_{2}=h_{r}, h_{3}=h_{r}+h_{w}, v_{2}$ calculated in (b), $v_{3}=0$.

$$
p_{2}=p_{0}+\rho g h_{w}-\frac{1}{2} \rho v_{2}^{2}=1.11 \quad \mathrm{bar}
$$

Exercise 34.

(a) The flow of water through a cylindrical tube is described by:

$$
R_{0}=\frac{8}{\pi} \frac{\eta L}{r_{0}^{4}}
$$

The total resistance of the new tube is equal to the resistance of the four parallel tubes:

$$
\frac{1}{R_{n}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}=\frac{4}{R_{0}}
$$

Therefore is:

$$
\begin{aligned}
& R_{n}=\frac{1}{4} R_{0} \\
& \frac{8 \eta L}{\pi r_{n}^{4}} \stackrel{!}{=} \frac{1}{4} \frac{8}{\pi} \frac{\eta L}{r_{0}^{4}} \\
& \Rightarrow r_{n}=\sqrt[4]{4} r_{0}=\sqrt{2} r_{0}=0.141 \mathrm{~m}
\end{aligned}
$$

(b) Reynolds number:

$$
\begin{aligned}
I_{0} & =I_{1} \\
4 v_{0} A_{0} & \stackrel{!}{=} v_{1} A_{1} \\
\Rightarrow v_{0} & =\frac{1}{2} v_{1}
\end{aligned}
$$

Reynolds number: $R e=\frac{\rho v d}{\eta}$

$$
\begin{gathered}
\frac{R e_{0}}{R e_{1}}=\frac{v_{0} r_{0}}{v_{1} r_{1}} \\
\frac{R e_{0}}{R e_{1}}=\frac{v_{0} r_{0}}{2 v_{0} \sqrt{2} r_{0}} \\
\frac{R e_{0}}{R e_{1}}=\frac{1}{2 \sqrt{2}}
\end{gathered}
$$

(c) In the case of A_{1} a turbulent flow is more probable. The velocity v_{1} is higher and therefore the Reynolds number $R e_{1}$ is closer to the critical Reynolds number where turbulent flow occurs.

Exercise 35.

(a) The forces can be described by the following equations:

$$
\begin{aligned}
m g & =V_{K} \rho_{K} g \\
F_{A} & =V_{W} \rho_{W} g
\end{aligned}
$$

where V_{K} is the volume of the cuboid and ρ_{K} the density, V_{W} is the volume of the cuboid which is in the water and ρ_{W} is the density of water. From this it follows:

$$
V_{K} \rho_{K}=V_{W} \rho_{W} \quad \Rightarrow \quad \frac{\rho_{K}}{\rho_{W}}=\frac{V_{W}}{V_{K}}=\frac{90}{100} \quad \Rightarrow \quad \rho_{K}=\frac{90}{100} \rho_{W}
$$

(b) Due to the additional buoyancy of the oil, the volume of the cuboid which enters the water is smaller.

