

UN I
BASEL

Departement Physik
Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students
 of Biology, Pharmacy and Geoscience

Sheet 8 / 9.11.2020

Solutions

Exercise 36.

The height of the water column due to capillary forces can be described by the following equation:

$$
h=\frac{2 \sigma}{\varrho g r}=14.3 \mathrm{~mm}
$$

where σ is the surface tension and ρ is the density of water.

Exercise 37.

According to the Hagen-Poiseuille equation, the pressure difference ΔP depends on the volume flow rate I_{V} :

$$
\Delta P=\frac{8 \eta l}{\pi r^{4}} I_{V}
$$

where η is the viscosity, l the length and r the radius of the capillary. The volume flow rate I_{V} is determined by the product of the cross-sectional area A of the capillary and the flow rate v : $I_{V}=A_{K a p} v=\pi r^{2} v$. By inserting this in the previous equation and solving it for the viscosity η we obtain:

$$
\eta=\frac{\pi r^{4} \Delta P}{8 l I_{V}}=\frac{r^{2} \Delta P}{8 l v}=3.98 \mathrm{mPa} \cdot \mathrm{~s}
$$

Exercise 38.

The gravitational force of the mass m added on the right side need to be compensated by the buoyancy force F_{A} acting on the cube in the water. From this the following equation results:

$$
\left|F_{A}\right|=F_{G, W}=m_{W} g=\varrho_{W} V_{W} g=\varrho_{W} V_{K} g
$$

where V_{W} is the volume of the suppressed water which is equal to the volume of the cube V_{K}. The gravitational force of the mass m added on the right side is $F_{G}=m g$. The absolute value of it should be equal to the buoyancy force:

$$
\varrho_{W} V_{K} g=m g
$$

From this it follows for m added on the right side:

$$
m=\varrho_{W} V_{K}=64 \mathrm{~g}
$$

Exercise 39.

We use the Bernoulli equation:

$$
p_{u}+\frac{1}{2} \rho v_{u}^{2}=p_{o}+\frac{1}{2} v_{o}^{2}
$$

where p_{u} is the pressure on the surface below the wing, p_{o} is the pressure on the surface above the wing, ρ is the density of the air, v_{u} is the velocity of the airflow below and v_{0} above the wing. We assume that both flow channels are at the same height. We solve the equation for v_{0} and use $p_{u}-p_{o}=900 \mathrm{~Pa}$ (given in the problem)

$$
v_{o}=\sqrt{\frac{2\left(p_{u}-p_{o}\right)}{\rho}+v_{u}^{2}}=116 \mathrm{~m} / \mathrm{s}
$$

Exercise 40.

There is a force equilibrium, since we have a stationary system $(a=0)$:

$$
\sum \vec{F}=0
$$

Three different forces act on the system:

- The weight force of the sphere (downwards): $F_{W, s p h}=m_{\text {sph }} \cdot g$
- The buoyancy force on the sphere (upwards): $F_{B, s p h}=\rho_{g l y c} \cdot V_{s p h} \cdot g$
- The frictional force against the sphere's movement (upwards): $F_{F}=6 \pi \cdot \eta_{g l y c} \cdot r_{s p h} \cdot v$

So applies:

$$
F_{W, s p h}-F_{B, s p h}-F_{F}=0
$$

Rearranged it results in:

$$
F_{W, s p h}=F_{B, s p h}+F_{F}
$$

Inserting results in:

$$
m_{s p h} \cdot g=\rho_{g l y c} \cdot V_{s p h} \cdot g+6 \pi \cdot \eta_{g l y c} \cdot r_{s p h} \cdot v
$$

After rearrangement and inserting of $m_{s p h}=\rho_{\text {steel }} V_{s p h}$ and $V_{s p h}=\frac{4}{3} \pi r^{3}$ it follows:

$$
\frac{4}{3} \pi r^{3} \cdot g \cdot\left(\rho_{s t e e l}-\rho_{g l y c}\right)=6 \pi \cdot \eta_{g l y c} \cdot r_{s p h} \cdot v
$$

The equation can be solved to get v by:

$$
v=\frac{\frac{4}{3} \pi r^{3} \cdot g \cdot\left(\rho_{\text {steel }}-\rho_{\text {glyc }}\right)}{6 \pi \cdot \eta_{\text {glyc }} \cdot r_{\text {sph }}}
$$

This leads to:

$$
v=\frac{2 r^{2} g}{9 \eta}\left(\rho_{\text {steel }}-\rho_{\text {glyc }}\right)=2.45 \cdot 10^{-3} \mathrm{~m} / \mathrm{s}
$$

