

Departement Physik
Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido miguel.carballido@unibas.ch
Office: 1.12
U N I Tel.: +41 (0)61 2073691
B ASEL

Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 1 / 17.09.2020
Zoom - Q\&A on the Exercises: 22.09.2020 / 23.09.2020

Exercise 1.

Find the derivative $d y / d x$ of the following functions:
(a) $y(x)=a x^{3}+b x^{2}+c x+d$
(c) $\quad y(x)=x \exp ^{-a x}$
(b) $\quad y(x)=b \ln (a x)$
(d) $\quad y(x)=a x \sqrt{1-b x^{3}}$

Find the derivative of the following functions with respect to time t :
(a) $\quad E(t)=\frac{1}{2} m v^{2}(t)$
(b) $\quad p(t)=m v(t)$

Calculate the integral $F(x)=\int f(x) d x$ of the following functions:
(a) $\quad f(x)=3 x^{3}+2 x^{2}$
(b) $\quad f(x)=a \sin (b x)$
(c) $\quad f(x)=\frac{4}{x}$

Given the vectors $\vec{a}=\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$ and $\vec{b}=\left(\begin{array}{c}3 \\ 5 \\ -1\end{array}\right)$, calculate the following vectors:
(a) $\vec{s}=\vec{a}+\vec{b}$
(c) $\vec{c}=\vec{a} \times \vec{b}$
(b) $\vec{s}=\vec{a}-\vec{b}$
(d) $c=\vec{a} \cdot \vec{b}$

Solve (a) and (b) graphically in the $x y$-plane.

Exercise 2.

Determine the SI units of the two constants C_{1} and $C_{2}\left(x[\mathrm{~m}], t[\mathrm{~s}], v[\mathrm{~m} / \mathrm{s}], F[\mathrm{~N}], m_{1}[\mathrm{~kg}], m_{2}[\mathrm{~kg}]\right)$.
(a) $\quad x=C_{1}+C_{2} t$
(d) $\quad F=C_{1} \frac{m_{1} m_{2}}{x^{2}}$
(b) $\quad v^{2}=2 C_{1} x$
(e) $\quad v=C_{1} \exp \left(x / C_{2}\right)$
(c) $\quad v=C_{1} x \ln \left(C_{2} t\right)$

Exercise 3.

Light propagates in vacuum with a constant speed of $3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.
(a) How long does light need to travel a distance equal to the diameter of the nucleus of a H -atom $\left(10^{-15} \mathrm{~m}\right)$?
(b) How long does light need to travel from the Sun to the Earth (calculate in s and min)? The distance between Sun and Earth is referred to as astronomical unit: $1 \mathrm{AU}=1.5 \cdot 10^{8} \mathrm{~km}$.
(c) How long does light need to cross the solar system with a diameter of $1.2 \cdot 10^{10} \mathrm{~km}$?

Exercise 4.

The ride of a car between one traffic light to the next one is observed and studied. The vehicle is uniformly accelerated from a standstill for a period of 6 s with $2.1 \mathrm{~m} / \mathrm{s}^{2}$. The car continues with this acquired velocity for 5 s . It stops at the next traffic light due to a deceleration (negative acceleration) of $4.2 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the the maximum velocity which the car reaches (in km / h)?
(b) Which distance does the car cover during the acceleration?
(c) How far does the car drive with a constant velocity?
(d) Calculate the stopping distance.
(e) How long is the total distance between the two traffic lights?

Exercise 5.

Tell for each of the four $x(t)$-curves in the following figures, if:
(a) the velocity at the time t_{2} is greater, less or equal than at the time t_{1}.
(b) the absolute value of the velocity at the time t_{2} is greater, less or equal than the absolute value at the time t_{1}.

