

Departement Physik Universität Basel Prof. D. Zumbühl & Prof. M. Calame Contact person: Miguel J. Carballido miguel.carballido@unibas.ch Office: 1.12 Tel.: +41 (0)61 207 36 91 http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 5 / 15.10.2020

Zoom - Q&A on the Exercises: $\mathbf{20.10.2020}/\mathbf{21.10.2020}$

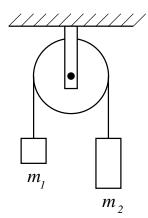
Exercise 21. A bullet gets shot vertically up. At a height of h = 2000 m the potential and the kinetic energy are equal($E_P = 0$ at h = 0). What is the velocity at h = 2000 m and what was the initial velocity v_0 ?

Exercise 22. A concrete slab (density $\rho = 2.2 \cdot 10^3 \text{ kg/m}^3$), with the dimensions $2.0 \times 1.0 \times 0.2 \text{ m}^3$, is pulled out from a 5 m deep construction pit above a 30° inclined plane. The coefficient of sliding friction is $\mu = 0.25$. Calculate the needed work.

Exercise 23. An object with the mass m = 10 kg gets accelerated by a spring on a horizontal slideway. Initially the spring got compressed by $\Delta s = 5$ cm and has a spring constant of k = 2450 Ncm⁻¹. After detaching from the spring the object is sliding for 2 m on a horizontal surface. Afterwards it is sliding up an inclined surface which has an angle of $\alpha = 30^{\circ}$. The coefficient of sliding friction on the entire surface is $\mu = 0.3$.

(a) Sketch the situation.

(b) Calculate the height Δh at which the object stops moving on the inclined surface.


Exercise 24. A homogeneous block made of oak wood with $m_Z = 600$ g is hanging from a cord, which has a length of l = 50 cm. A bullet, with $m_B = 5$ g and a velocity of v = 320 m/s, enters in the resting block (The shot goes through the center of mass). Calculate the angle of deflection of the oak block!

Exercise 25.

Two masses m_1 and m_2 are connected through a thin rope. The rope goes above a rotatable wheel which moves without friction, see figure (neglect the mass of the wheel and of the rope).

(a) What happens if $m_1 = m_2$?

(b) Calculate by using the law of conservation of energy the acceleration if $m_1 \neq m_2$.

Solutions:

 $\underline{\mathrm{Exercise}}$ 21. 198 m/s and 280 m/s

 $\underline{\text{Exercise 22.}} 61.85 \text{ kJ}$

<u>Exercise 23.</u> 1.65 m

Exercise 24. 73°