

Exercises and Complements for the Introduction to Physics I

for Students
of Biology, Pharmacy and Geoscience

Sheet 8 / 5.11.2020
Zoom - Q\&A on the Exercises: 10.11.2020/11.11.2020

Exercise 36.

Calculate the capillary head (height of the water column due to capillary forces) of water in a tube with a radius of 1 mm . The density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$ and the surface tension is $0.07 \mathrm{~N} / \mathrm{m}$.

Exercise 37.

We assume that blood needs 1.0 s to flow through a 1.0 mm long capillary of the human vascular system. The diameter of the capillary is $7.0 \mu \mathrm{~m}$ and the drop in pressure is 2.6 kPa . Assume a laminar flow of the blood. Calculate the viscosity of the blood.

Exercise 38.

A 200 ml -beaker is half-filled with water and placed in the left bowl of a beam balance. The right bowl of the beam balance is filled with enough sand that the scale is in equilibrium. A cube, attached to a wire, has an edge length of 4.0 cm . The cube is dipped into the water till it is completely covered, but does not touch the base of the beaker. On the right side a mass m has to be added in order to bring the beam balance back to equilibrium. How big is the mass m ?

Exercise 39.

The flow rate of air below a wing of an airplane is $110 \mathrm{~m} / \mathrm{s}$. How big is the velocity of the airflow above the wing, in order to produce a difference in pressure of 900 Pa between the upper and the lower surface of the wing? Assume the density of air to be $1.3 \cdot 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$.

Exercise 40.

A steel sphere with a diameter of 1 mm falls through glycerin. What is the constant velocity of the sphere? The density of steel is $\rho_{S}=7900 \mathrm{~kg} / \mathrm{m}^{3}$, of glycerin is $\rho_{G}=1260 \mathrm{~kg} / \mathrm{m}^{3}$ and the viscosity of glycerin is $\eta_{G}=1.48 \mathrm{~Pa} \cdot \mathrm{~s}$.
Tip: First calculate the buoyancy force acting on the sphere.

Solutions

Exercise 36. 14.3 mm
Exercise 37. $3.98 \mathrm{mPa} \cdot \mathrm{s}$
Exercise 38.64 g
Exercise 39. $116 \mathrm{~m} / \mathrm{s}$
Exercise 40. $2.45 \cdot 10^{-3} \mathrm{~m} / \mathrm{s}$

