

UNI
BASEL

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 9 / 12.11.2020
Zoom - Q\&A on the Exercises: 17.11.2020/18.11.2020

Exercise 41.

On a massless thread of length $l=15 \mathrm{~m}$ hangs a punctiform mass $m=8 \mathrm{~kg}$. We consider an undamped oscillation with a displacement of 5°. The direction of the oscillation is along the x coordinate, the height difference of the pendulum is given with the y-coordinate.
(a) What frequency does the pendulum have?
(b) What is the oscillating period of the pendulum?
(c) Which distance in x-direction crosses the mass during a period?
(d) What is the $x(t)$ equation of the vibration? (For $t=0$, the pendulum should start at the maximum value of x .)
(e) What is the speed in x-direction 5 s after the start?
(f) What is the restoring force at the reversal points?

Exercise 42.

After running for 12 h a mechanical pendulum clock is 30 min slow. The pendulum is originally 0.5 m long. To which length l does the pendulum need to be adjusted so that the clock runs exactly?

Exercise 43.

A sphere (mass $m=400 \mathrm{~g}$) attached to a wire (length $l=0.2 \mathrm{~m}$) swings against a massless spring (spring constant $D=19.6 \mathrm{~N} / \mathrm{m})$ and gets elastically pushed back by the spring (see figure). The maximum angle of deflection α_{0} is 10°.
(a) How long are the sphere and the spring in contact?
(b) Does the contact time depend on α ?

Exercise 44.

A wooden cuboid with height h and a base area A floats in water. It is briefly submerged in the water and then released. Subsequently, it starts to oscillate up and down.
(a) Demonstrate that the motion is a harmonic oscillation.
(b) Derive a term for the period T of oscillation.
(c) Is the result of (b) also valid for a wooden sphere? Justify your answer.

Exercise 45.

A wooden brick is attached to a spring and swings back and forth above a rough surface, see figure. After 5 periods of oscillation, the spring deflection is half the size as at the beginning. Each oscillation has a duration of 3 s . How big is the damping con-
 stant δ ?

Solutions

Exercise 41. (a) 0.13 Hz
(b) 7.8 s
(c) 5.23 m
(e) $0.84 \mathrm{~m} / \mathrm{s}$
(f) 6.84 N

Exercise 42. 0.459 m
Exercise 43. (a) 0.32 s
Exercise 45. $0.0462 \mathrm{~s}^{-1}$

