

UN I
BASEL

Departement Physik Universität Basel
Prof. D. Zumbühl \& Prof. M. Calame
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 12 / 3.12.2020
Zoom - Q\&A on the Exercises: 8.12.2020/9.12.2020

Exercise 56.

A way, to keep the distance between two points regardless of temperature constant, is shown in the figure: Two rods of different lengths and of different material are tightly connected to each other at one end. With an appropriate choice of length and material for the rods, the distance between the two ends of the rods l (see figure) should be constant.

If $\operatorname{rod} A$ is out of copper and 20 cm long, how long does the $\operatorname{iron} \operatorname{rod} B$ have to be, so that l is independent of the temperature?

Exercise 57.

A 2 m long, round copper stick has a diameter of 2 cm . The temperature at the ends is kept at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively. The surface of the stick is isolated so that no heat exchange with the environment can take place. Calculate:
(a) the heat flow rate
(b) the thermal gradient
(c) the thermal resistance (temperature difference per heat flow rate) of the stick.

Exercise 58.

We pour $200 \mathrm{~cm}^{3}$ tea with a temperature of $95^{\circ} \mathrm{C}$ in a 150 g glass cup which initially has a temperature of $20^{\circ} \mathrm{C}$. What is the equilibrium temperature of the system, assuming that no heat exchange with the environment takes place?

Exercise 59.

A system in a lab is cooled by a heat exchanger. 50 liter of water per hour flow through the heat exchanger. The inlet of the exchanger is at $18^{\circ} \mathrm{C}$ and at the outlet at $25^{\circ} \mathrm{C}$. How big is the cooling power, respectively how much energy per time gets transported by the water?

Exercise 60.

An ideal, monatomic gas (isentropic expansion factor $\gamma=1.66$) expands slowly until its pressure has decreased to exactly half of its original value. By what factor does the volume change, when the change of state is (a) isothermal, and (b) adiabatic?

Solutions.

Exercise 56. 28.0 cm

Exercise 57. (a) 6.1 W, (b) $50 \mathrm{~K} / \mathrm{m}$, (c) $16.3 \mathrm{~K} / \mathrm{W}$
Exercise 58. $86.5^{\circ} \mathrm{C}$

Exercise 59. 406.6 W
Exercise 60. (a) 2.0, (b) 1.52

