

Departement Physik
Universität Basel
Prof. E. Meyer / PD. T. Glatzel
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
U N I Tel.: +41 (0)61 2073691
B A S E L
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

of Biology, Pharmacy and Geoscience

Exercise 9.

(a) Assume an air-filled parallel-plate capacitor with square plates with side length 25 cm and distance $d_{1}=0.5 \mathrm{~mm}$. Calculate its capacity.
(b) This capacitor is charged till a potential difference of $U_{1}=10 \mathrm{~V}$ is reached. Then the capacitor is disconnected form the source. What is the potential difference U_{2} if the distance between the plates is increased to $d_{2}=5 \mathrm{~mm}$?
(c) Now, the space between the two plates is filled with a dielectric material $(\varepsilon=2.1)$ and an additional capacitor with capacity C_{x} is connected in series. How large must C_{x} be for the total charge of the system to remain the same and equal C_{1} ?

Exercise 10.

Calculate the total capacity between points A and B.

Exercise 11.

A $20-\mathrm{pF}$-capacitor is charged to 3 kV . Subsequently it is disconnected from the battery and connected to a $50-\mathrm{pF}$-capacitor.
(a) What is the charge on each capacitor after?
(b) What is the energy stored in the $20-\mathrm{pF}$-capacitor before it is disconnected from the battery?
(c) What is the energy stored in both capacitors after they are connected to each other?

Exercise 12.

In a capacitor with plate area $A=0.15 \mathrm{~m}^{2}$ and plate distance $d=3 \mathrm{~cm}$ a dielectric material $(\varepsilon=$ 2.1) is inserted to occupy half the space in between. For the two cases shown in the image, calculate the capacity of the capacitor.

