

Departement Physik
Universität Basel
Prof. E. Meyer / PD. T. Glatze
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
U N I Tel.: +41 (0)61 2073691
B A S EL http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students
of Biology, Pharmacy and Geoscience

Sheet $4 / 25.04 .2021$
Solutions

Exercise 13.

See also script 306-3 and following pages
a) Resistance:

$$
R=\varrho_{C u} \frac{l}{A}=\varrho_{C u} \frac{l}{\pi r^{2}}=0.54 \Omega
$$

b) Voltage drop:

$$
\Delta U=R I=54 \mathrm{~V}
$$

Therefore, the final voltage is: $U_{\text {Ende }}=166 \mathrm{~V}$.
c) Current density:

$$
i=\frac{I}{A}=e n v_{D}
$$

where I - current, A - cross-section of the wire, e - elementary charge, n - density of electrons, v_{D} drift velocity of the electrons. With N_{A} as the Avogadro's constant, we obtain:

$$
\begin{gathered}
A=\pi r^{2}=3.1 \cdot 10^{-4} \mathrm{~m}^{2} \\
n=\frac{N_{A} \cdot \rho_{M}}{M_{A}}=8.5 \cdot 10^{28} \mathrm{~m}^{-3} \\
v_{D}=\frac{I}{e n A}=\frac{I M_{A}}{e N_{A} \rho_{M} \pi r^{2}}=2.3 \cdot 10^{-5} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
t_{\text {Drift }}=\frac{l}{v_{D}}=\frac{l e N_{A} \rho_{M} \pi r^{2}}{I M_{A}}=4.3 \cdot 10^{8} \mathrm{~s} \approx 14 \mathrm{Jahre}
\end{gathered}
$$

Exercise 14.

Mol-mass of $\mathrm{NaCl}: M=58.5 \mathrm{~g} / \mathrm{mol}$. Also 9 g NaCl in $1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ represent $0.154 \mathrm{~mol} / \mathrm{l}$, which corresponds to a concentration of charge carriers of

$$
\begin{aligned}
n & =0.154 \frac{\mathrm{~mol}}{l} \times 6.022 \cdot 10^{23} \frac{1}{\mathrm{~mol}} \\
& =9.27 \cdot 10^{22} \frac{1}{l} \\
n & =9.27 \cdot 10^{25} \frac{1}{\mathrm{~m}^{3}}
\end{aligned}
$$

a) Script page 306-10 and following pages:

$$
\begin{aligned}
\sigma & =e\left(n^{+} b^{+}+n^{-} b^{-}\right) \\
& =1.6 \cdot 10^{-19} \mathrm{C} \times 9.27 \cdot 10^{25} \frac{1}{\mathrm{~m}^{3}} \times(4.6+6.85) \cdot 10^{-8} \frac{\mathrm{~m}^{2}}{\mathrm{Vs}} \\
\sigma & =1.7 \frac{1}{\Omega \mathrm{~m}}
\end{aligned}
$$

b) $R=\frac{l}{\sigma A}=882 \Omega$.
c) $U=I R=88 \mathrm{~V}$.

Exercise 15.

Taking into account the symmetry of the problem, it follows immediately that the points $2,4,5$ and $3,6,8$ are all at the same potential. If we connect these points by a resistance-free wire, then we get the simplified circuit diagram:

and therefore:

$$
R_{e r s}=\frac{R}{3}+\frac{R}{6}+\frac{R}{3}=\frac{5}{6} R
$$

Exercise 16.

1 to 2: Using the same principle as in Exercise 15:

finally:

$$
\frac{1}{R_{\text {ers }}}=\frac{1}{R}+\frac{5}{7 R} \Rightarrow R_{\text {ers }}=\frac{7}{12} R
$$

1 to 3 :

Due to symmetry, no current goes between points 4,2 and 6,8 .

$$
\frac{1}{R_{\text {ers }}}=\frac{1}{R}+\frac{1}{3 R} \Rightarrow R_{\text {ers }}=\frac{3}{4} R
$$

