

Departement Physik
Universität Basel
Prof. E. Meyer / PD. T. Glatzel
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
UNI
Tel.: +41 (0)61 2073691
BASEL
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

of Biology, Pharmacy and Geoscience

Sheet 5 / 01.04.2021

Solutions

Exercise 17.

From the Lorentz force on a wire/conductor (Script: 307-3)

$$
F_{L}=I l B
$$

and the force of gravity

$$
F_{G}=m g=\rho A l g
$$

follows:

$$
\tan \varphi=\frac{F_{L}}{F_{G}}=\frac{I B}{\rho A g}=\frac{j B}{\rho g}=0.302 \quad \Rightarrow \quad \varphi=16.8^{\circ}
$$

where $j=I / A$ is the current density.

Exercise 18.

From the energy equation/balance it follows that the energy from the acceleration due to magnetic field $=$ kinetic energy:

$$
\begin{aligned}
E_{b} & =E_{k i n} \\
e U & =\frac{1}{2} m_{1} v^{2}
\end{aligned}
$$

follows:

$$
v=\sqrt{\frac{2 e U}{m_{1}}}=8.755 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

and thus, from the force balance in the circular path:

$$
\begin{aligned}
\text { Lorentz-force } & =\text { Centrifugal-force } \\
F_{L} & =F_{Z} \\
e v B & =\frac{m_{1} v^{2}}{r_{1}}
\end{aligned}
$$

(a) For the magnetic field, this results in:

$$
B=\frac{\sqrt{2\left(m_{1} / e\right) U}}{r_{1}}=0.18 \mathrm{~T}
$$

(b) The slightly heavier ${ }^{65} \mathrm{Cu}$-ion describes a circular path with the radius:

$$
r_{2}=r_{1} \sqrt{\frac{m_{2}}{m_{1}}}=322.2 \mathrm{~mm}
$$

In the case of a semi-circular orbit, the detection points of the two types of ions are thus separated by the distance $\Delta x=2\left(r_{2}-r_{1}\right) \approx 10 \mathrm{~mm}$.

Exercise 19.

(a) See Script 307-11.

$$
B=\frac{\mu_{0} N I}{l} \quad \Rightarrow \quad I=\frac{B_{h} l}{\mu_{0} N}=0.33 \mathrm{~A}
$$

(b) So that the field B_{H} from Earth can be compensated, the field B_{S} from the coil must point to the right. With the "right-Hand rule" one realizes the current must be I_{+}.

Exercise 20.

As a result of the temporal change of the magnetic flux Φ inside the coil when switching it off, a short-circuit happens in the coil itself

$$
I=\frac{U_{\text {ind }}}{R}=-\frac{N}{R} \frac{d \Phi}{d t}=-\frac{L}{R} \frac{d I}{d t}
$$

inducing therefore the ohmic resistance of the winding $R=U_{0} / I_{0}$ and inductance of the coil $L=$ $\mu_{r} \mu_{0} N^{2} A / l$, where $A=\pi d_{E}^{2} / 4$ is the cross-section and $l=2 \pi r=\pi d_{S}$ the length. We apply the numerical values $R=38 \Omega$ and $L=67.9 \mathrm{mH}$. Writing in terms of I :

$$
\frac{d I}{I}=-\frac{R}{L} d t
$$

After integration, with initial condition $I(t=0)=I_{0}$:

$$
\ln I-\ln I_{0}=\ln \frac{I}{I_{0}}=-\frac{R}{L} t \quad \text { bzw. } \quad I(t)=I_{0} \exp ^{-(R / L) t}
$$

For $t=1 \cdot 10^{-3} \mathrm{~s}$ follows $I\left(t=1 \cdot 10^{-3}\right)=2.0 \mathrm{~A}$.

