

Exercises and Complements for the Introduction to Physics II

for Students
of Biology, Pharmacy and Geoscience

Sheet 5 / 01.04.2021
Zoom - Q\&A on the Exercises: 13.04.2021-15.04.2021

Exercise 17.

A wire made of aluminum (density $\rho=2.7 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$) is suspended horizontally between the two poles of a horseshoe magnet, which is positioned vertically with one pole on top of the other. The wire can oscillate freely in the vertical magnetic field (flux density $B=0.08 \mathrm{~T}$). Through the wire flows a current, with current density $j=10^{5} \mathrm{~A} / \mathrm{m}^{2}$. At which angle with respect to the vertical axis of the pendulum (the so-called Lorentz swing) will the wire be in static equilibrium?

Exercise 18.

A ${ }^{63} \mathrm{Cu}$-Ion (charge $+e$, mass $m_{1}=1.045 \cdot 10^{-25} \mathrm{~kg}$) initially at rest is accelerated by a potential $U=2.5 \mathrm{kV}$ and then deflected into a homogeneous magnetic field, which is perpendicular to the trajectory of the ion (mass spectrometer). The trajectory radius of the Cu ion is 317.3 mm .
(a) Calculate the magnetic field strength B
(b) What is the radius of the trajectory of a similar ${ }^{65} \mathrm{Cu}$-Ion of mass $m_{2}=1.078 \cdot 10^{-25} \mathrm{~kg}$ in the same magnetic field?

Exercise 19.

The B-field of the Earth $\left(B_{H}\right)$ should be compensated locally with a coil of length 2 m and 100 turns.
(a) How large must the current in the coil be, if the B-field of the Earth is $B_{H}=2.1 \cdot 10^{-5} \mathrm{~T}$?

(b) Which direction of the current must be chosen: I_{+}or I_{-}?

Exercise 20.

Through a single-layered coil, with $N=300$ turns, wound around a closed ring-shaped iron core (diameter of the core $d_{E}=2 \mathrm{~cm}$, diameter of the ring $d_{S}=10 \mathrm{~cm}$, permeability $\mu_{r}=600$) is applied a DC voltage of $U_{0}=133 \mathrm{~V}$ at a current of $I_{0}=3.5 \mathrm{~A}$. Electronically, the voltage is switched off and the coil is short-circuited simultaneously. What is the magnitude of the current in the coil $t=1 \cdot 10^{-3} \mathrm{~s}$ after switching it off?

Answers.

Exercise 17. 16.8°

Exercise 18. (a) $0.18 \mathrm{~T} \quad$ (b) 322.2 mm

Exercise 19. (a) 0.33 A

Exercise 20. 2 A

