

Departement Physik
Universität Basel
Prof. E. Meyer / PD. T. Glatzel
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

of Biology, Pharmacy and Geoscience

Sheet 6 / 08.04.2021
Zoom - Q\&A on the Exercises: 20.04.2021-22.04.2021

Exercise 21.

In an AC circuit $\left(U_{e f f}=220 \mathrm{~V}, I_{\text {eff }}=100 \mathrm{~A}, f=50 \mathrm{~Hz}\right)$, a coil and an ohmic resistor are connected in series. The time averaged value of the electrical power is $\bar{P}=15 \mathrm{~kW}$.
(a) Calculate the power factor $\cos (\varphi)$ and the phase angle φ between current and voltage.
(b) What additional capacitance had to be connected in series to the circuit to bring the power factor to $\cos \left(\varphi^{\prime}\right)=0.9$?

Exercise 22.

A resonant circuit consists of an ideal coil $L=2,5 \mathrm{mH}$ and the capacitors $C_{1}=2 \mu \mathrm{~F}$ and $C_{2}=3 \mu \mathrm{~F}$. The capacitors were charged with $U=180 \mathrm{~V}$. Then, the switch is closed.
a) How large is the oscillation period?
b) Calculate the energies in the capacitors.
c) Determine the maximum current amplitude at the coil.

Exercise 23.

A $R L C$-circuit is connected to a sine wave-generator with tunable frequency f and constant amplitude $U_{m}=10 \mathrm{~V}\left(R=1.0 \cdot 10^{2} \Omega, C=0.10 \mu \mathrm{~F}, L=0.245 \mathrm{H}\right)$.
(a) What does "resonance" mean? At what frequency f_{0} will the resonance happen?
(b) How large is the amplitude of the current I_{m} in the resonant case?
(c) What is the voltage $U_{C, m}$ across the capacitor?

Exercise 24.

On the primary side of a voltage-reducing transformer 2.5 kV are fed, and loaded with 80 A on the secundary side. The ratio of the number of turns/windings on the primary and secundary sides is $20: 1$. Determine the voltage on the secondary side, the current on the primary side and the power output at an efficiency of 100% (ideal transformer)!

Answers.

Exercise 21. (a) 0.68 and $47.2^{\circ} \quad$ (b) 3.6 mF

Exercise 22. (a) $7.02 \cdot 10^{-4} \mathrm{~s} \quad$ (b) $3.24 \cdot 10^{-2} \mathrm{~J}$ and $4.86 \cdot 10^{-2} \mathrm{~J} \quad$ (c) 8.05 A

Exercise 23. (a) $1.02 \mathrm{kHz} \quad$ (b) $100 \mathrm{~mA} \quad$ (c) 157 V

Exercise 24. 125 V, 4 A, 10 kW

