

Departement Physik Universität Basel Prof. E. Meyer / PD. T. Glatzel Contact person: Miguel J. Carballido miguel.carballido@unibas.ch Office: 1.12 Tel.: +41 (0)61 207 36 91 http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

of Biology, Pharmacy and Geoscience

Sheet 6 / 08.04.2021

Zoom - Q&A on the Exercises: $\mathbf{20.04.2021}\textbf{-}\mathbf{22.04.2021}$

Exercise 21.

In an AC circuit ($U_{eff} = 220$ V, $I_{eff} = 100$ A, f = 50 Hz), a coil and an ohmic resistor are connected in series. The time averaged value of the electrical power is $\overline{P} = 15$ kW.

(a) Calculate the power factor $\cos(\varphi)$ and the phase angle φ between current and voltage.

(b) What additional capacitance had to be connected in series to the circuit to bring the power factor to $\cos(\varphi') = 0.9$?

Exercise 22.

A resonant circuit consists of an ideal coil L = 2,5 mH and the capacitors $C_1 = 2 \mu \text{F}$ and $C_2 = 3 \mu \text{F}$. The capacitors were charged with U = 180 V. Then, the switch is closed.

- a) How large is the oscillation period?
- b) Calculate the energies in the capacitors.
- c) Determine the maximum current amplitude at the coil.

Exercise 23.

A *RLC*-circuit is connected to a sine wave-generator with tunable frequency f and constant amplitude $U_m = 10$ V ($R = 1.0 \cdot 10^2 \Omega$, $C = 0.10 \mu$ F, L = 0.245 H).

- (a) What does "resonance" mean? At what frequency f_0 will the resonance happen?
- (b) How large is the amplitude of the current I_m in the resonant case?
- (c) What is the voltage $U_{C,m}$ across the capacitor?

Exercise 24.

On the primary side of a voltage-reducing transformer 2.5 kV are fed, and loaded with 80 A on the secundary side. The ratio of the number of turns/windings on the primary and secundary sides is 20:1. Determine the voltage on the secondary side, the current on the primary side and the power output at an efficiency of 100% (ideal transformer)!

Answers.

<u>Exercise 21.</u> (a) 0.68 and 47.2° (b) 3.6 mF <u>Exercise 22.</u> (a) $7.02 \cdot 10^{-4}$ s (b) $3.24 \cdot 10^{-2}$ J and $4.86 \cdot 10^{-2}$ J (c) 8.05 A <u>Exercise 23.</u> (a) 1.02 kHz (b) 100 mA (c) 157 V Exercise 24. 125 V, 4 A, 10 kW