

Departement Physik
Universität Basel
Prof. E. Meyer / PD. T. Glatzel
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
Tel.: +41 (0)61 2073691
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

 for Students
of Biology, Pharmacy and Geoscience

Sheet 9 / 29.04.2021

Solutions

Exercise 33.

The so-called Bragg condition is used to calculate the lattice plane spacing d, which can be derived in a similar way to the interference on thin layers (script p. 503-2).

The maxima in the measured spectrum occur when the maxima of the reflected light waves (at different planes) are superimposed. This happens e.g. at $\alpha \approx 7.5^{\circ}$. So here the path difference 2δ must correspond exactly to the wavelength λ :

$$
2 \delta=\lambda \quad \text { or } \quad \delta=\frac{\lambda}{2}
$$

According to the sketch, the following applies between two levels:

$$
\sin \alpha=\frac{\delta}{d}
$$

Thus for the lattice plane spacing d in question, it follows:

$$
d=\frac{\delta}{\sin \alpha}=\frac{\lambda}{2 \cdot \sin \alpha}=\frac{7.0 \cdot 10^{-11} \mathrm{~m}}{2 \cdot \sin 7.5^{\circ}}=2.7 \cdot 10^{-10} \mathrm{~m}
$$

Exercise 34.

(a) The following applies for the theoretical magnification (cf. p. 404-10):

$$
\Gamma=\frac{s \cdot s_{0}}{f_{1} \cdot f_{2}}
$$

The following applies to the tube length s :

$$
s=a-f_{1}-f_{2}=0.168 \mathrm{~m}
$$

Hence it follows:

$$
\Gamma=\frac{0.168 \mathrm{~m} \cdot s_{0}}{f_{1} \cdot f_{2}}=\frac{0.168 \mathrm{~m} \cdot 0.25 \mathrm{~m}}{0.012 \mathrm{~m} \cdot 0.02 \mathrm{~m}}=175
$$

(b) For the focal length of the eyepiece it follows:

$$
\begin{gathered}
\Gamma=\frac{s \cdot s_{0}}{f_{1} \cdot f_{2}} \\
\frac{\Gamma \cdot f_{2}}{s_{0}}=\frac{a-f_{1}-f_{2}}{f_{1}} \\
\frac{\Gamma \cdot f_{2}}{s_{0}}+1=\frac{a-f_{2}}{f_{1}} \\
f_{1}=\frac{s_{0}\left(a-f_{2}\right)}{\Gamma \cdot f_{2}+s_{0}} \\
f_{1}=\frac{0.25 \mathrm{~m} \cdot(0.2 \mathrm{~m}-0.012 \mathrm{~m})}{100 \cdot 0.012 \mathrm{~m}+0.25 \mathrm{~m}}=3.2 \mathrm{~cm}
\end{gathered}
$$

(c) Accordingly, the following applies to magnification:

$$
\Gamma=\frac{B}{G}=\frac{18.75 \mathrm{~mm}}{2.5 \mathrm{~mm}}=7.5
$$

For the focal length of the lens it follows analogously to (b):

$$
f_{2}=\frac{s_{0}\left(a-f_{1}\right)}{\Gamma \cdot f_{1}+s_{0}} f_{2}=\frac{0.25 \mathrm{~m} \cdot(0.2 \mathrm{~m}-0.02 \mathrm{~m})}{7.5 \cdot 0.02 \mathrm{~m}+0.25 \mathrm{~m}}=11.3 \mathrm{~cm}
$$

Exercise 35.

(a) See script 504-9.

$$
d=\text { Lattice constant }=\frac{1}{1000} \mathrm{~cm}=1 \cdot 10^{-5} \mathrm{~m}
$$

Intensity maxima for the lattice with constant spacing d :

$$
\sin \theta_{m}=m \frac{\lambda}{d} \quad \Rightarrow \quad \theta_{1}=\arcsin \frac{\lambda}{d}=3.73^{\circ}
$$

(b) The largest value for m in the equation for the intensity maxima occurs when $\sin \theta_{m}$ is maximal (i.e. $=1$).

$$
m_{\max }=\frac{d}{\lambda}=\frac{1 \cdot 10^{-5} \mathrm{~m}}{650 \mathrm{~nm}}=15.38 \quad \Rightarrow \quad \text { Maximum diffraction order }=15
$$

(c) The equation from (a) must be rearranged here for $m=1$:

$$
\lambda=d \cdot \sin \theta
$$

So it follows:

$$
\lambda_{1}=1 \cdot 10^{-5} \mathrm{~m} \cdot \sin 2.46^{\circ}=429.2 \mathrm{~nm} \quad \text { und } \quad \lambda_{2}=1 \cdot 10^{-5} \mathrm{~m} \cdot \sin 3.15^{\circ}=549.5 \mathrm{~nm}
$$

Exercise 36.

The following sketch shows all the important relationships:

For the gap distance, the following relationship can now be established using the path difference Δs and the angle α :

$$
\sin \alpha=\frac{\Delta s}{a} \quad \text { bzw. } \quad a=\frac{\Delta s}{\sin \alpha}
$$

The following applies to the path difference at the 4th maximum:

$$
\Delta s=4 \cdot \lambda
$$

Furthermore, the small angle approximation applies to the entire experimental setup:

$$
\sin \alpha=\tan \alpha=\frac{x}{d}
$$

Since the distance between the two 4 th order maxima is $2 x=26 \mathrm{~mm}$, it follows that $x=13 \mathrm{~mm}$. Hence for a :

$$
a=\frac{\Delta s}{\sin \alpha}=\frac{4 \cdot \lambda \cdot d}{x}=\frac{4 \cdot 633 \mathrm{~nm} \cdot 1700 \mathrm{~mm}}{13 \mathrm{~mm}}=331.1 \mu \mathrm{~m}
$$

