

Departement Physik Universität Basel Prof. E. Meyer / PD. T. Glatzel

Contact person: Miguel J. Carballido miguel.carballido@unibas.ch
Office: 1.12

U N I B A S E L

Tel.: +41 (0)61 207 36 91 http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

of Biology, Pharmacy and Geoscience

Sheet 10 / 06.05.2021

Solutions

Exercise 37.

For the angular magnification of the magnifying glass we have:

$$\Gamma = \frac{s_0}{f} = \frac{0.25 \text{ m}}{\frac{1}{12 \text{ dpt}}} = 3$$

Exercise 38.

The following applies to the intensity of the light I_2 that passes through the polarization film:

$$I_2 = I_1 \cos^2 \theta$$

Here I_1 is the intensity of the light before it hits the film and θ is the angle that the transmission axis forms with the horizontal. This results in:

$$\arccos\sqrt{\frac{I_2}{I_1}} = \arccos\sqrt{0.15} = 67.2^{\circ}$$

Exercise 39.

- (a) true, because the polarization axes of the last two filters are rotated by 90° to each other
- (b) true, because after passing a polarizing filter twisted by 45° only exactly half of the intensity comes through ($\cos^2 45^{\circ} = 0.5$)
- (c) false, because the polarization axes of the filters are shifted by 90°, this is impossible
- (d) true, since the light is previously unpolarized
- (e) true, because the polarization axes of the filters are always shifted by 45° and the light is unpolarized in the beginning

Exercise 40.

(a) See script 507-3. angle of incidence α_B for full polarization from Brewster's law:

$$\tan \alpha_B = \frac{n_{\rm glass}}{n_{\rm air}} \qquad \Rightarrow \qquad \alpha_B = 55.41^{\circ}$$

(b) See script 507-7.

$$\alpha = \varphi \cdot c \cdot d$$
 \Rightarrow $c = \frac{\alpha}{\varphi \cdot d} = 3.0 \text{ g/l}$

(c) $\alpha = 0$, since the same number of levorotatory and dextrorotatory molecules are present.