Solutions to the Physics II mock exam FS 2021

1 Optical lens (8 Points)

(a) For the focal length of a lens, the following applies:

$$
\begin{aligned}
\frac{1}{f} & =\left(\frac{n}{n_{\mathrm{air}}}-1\right) \cdot\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \quad(1 \text { Point }) \\
& =\left(\frac{1.45}{1}-1\right) \cdot\left(\frac{1}{-30 \mathrm{~cm}}-\frac{1}{25 \mathrm{~cm}}\right) \\
\Rightarrow f & =-30.3 \mathrm{~cm} \quad \text { (1 Point) })
\end{aligned}
$$

(total 2 Points)
(b) From the lens equation $1 / g+1 / b=1 / f$ we have:

$$
\begin{aligned}
b & =\frac{g f}{g-f} \quad(\mathbf{1} \text { Point }) \\
& =\frac{(80 \mathrm{~cm}) \cdot(-30.3 \mathrm{~cm})}{(80 \mathrm{~cm})-(-30.3 \mathrm{~cm})} \\
& =-22.0 \mathrm{~cm} \quad \text { (1 Point) }
\end{aligned}
$$

(total 2 Points)
(c) The magnification is:

$$
\begin{aligned}
V & =-\frac{b}{g} \quad(\mathbf{1} \text { Point }) \\
& =-\frac{-22 \mathrm{~cm}}{80 \mathrm{~cm}} \\
& =0.3 \quad(\mathbf{1} \text { Point })
\end{aligned}
$$

(total 2 Points)
(d) - Since $b<0$, the image is virtual. (1 Point)

- Since $V>0$, the image is upright. (1 Point)
(total 2 Points)

2 Prism (6 Points)

Calculating of the first refraction angle β_{1} with $\alpha_{1}=30^{\circ}$:

$$
\begin{aligned}
\frac{n_{\text {glass }}}{n_{\text {air }}} & =\frac{\sin \alpha_{1}}{\sin \beta_{1}} \quad(\mathbf{1} \text { Point }) \\
\Rightarrow \beta_{1} & =\arcsin \left(\frac{\sin \alpha_{1}}{n_{\text {glass }}}\right) \\
& =\beta_{1}=19.3^{\circ} \quad(\mathbf{1} \text { Point })
\end{aligned}
$$

Knowing this angle, the incidence angle on the other side can be determined. (1 Point) for the correct drawing.

$$
\begin{aligned}
90^{\circ} & =\beta_{1}+\gamma \\
\Rightarrow \gamma & =70.7^{\circ} \quad(\mathbf{0} .5 \text { Point }) \\
180^{\circ} & =\gamma+60^{\circ}+\delta \\
\Rightarrow \delta & =49.3^{\circ} \\
90^{\circ} & =\alpha_{2}+\delta \\
\Rightarrow \alpha_{2} & =40.7^{\circ} \quad(\mathbf{0} 5 \text { Point })
\end{aligned}
$$

This incidence angle is now used to calculate the second refraction angle.

$$
\begin{aligned}
\frac{\sin \alpha_{2}}{\sin \beta_{2}} & =\frac{n_{\text {air }}}{n_{\text {glass }}} \quad(\mathbf{1} \text { Point }) \\
\Rightarrow \beta_{2} & =\arcsin \left(n_{\text {glass }} \sin \alpha_{2}\right) \\
& =\beta_{2}=79.9^{\circ} \quad(\mathbf{1} \text { Point })
\end{aligned}
$$

(total 6 Points)

3 Photoelectric effect (8 Points)

(a) For the energy of an incident photon the following holds:

$$
\begin{aligned}
E_{P h} & =h f=\frac{h c}{\lambda} \quad(\mathbf{1} \text { Point }) \\
& =\frac{6.626 \cdot 10^{-34} \mathrm{Js} \cdot 2.9979 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}{300 \mathrm{~nm}} \\
& =4.13 \mathrm{eV} \quad(\mathbf{1} \text { Point })
\end{aligned}
$$

(total 2 Points)
(b) The work of detachment of potassium can be calculated from the kinetic energies of photons and electrons:

$$
\begin{aligned}
W_{\text {detach }} & =E_{P h}-E_{k i n, e} \quad(\mathbf{1} \text { Point }) \\
& =4.13 \mathrm{eV}-2.03 \mathrm{eV} \\
& =2.10 \mathrm{eV} \quad(\mathbf{1} \text { Point })
\end{aligned}
$$

(total 2 Points)

(c) It is valid for the kinetic energy of the electrons:

$$
\begin{aligned}
E_{k i n, e} & =h f-W_{\text {detach }}=\frac{h c}{\lambda}-W_{A b l} \quad(\mathbf{1} \text { Point }) \\
& =\frac{6.626 \cdot 10^{-34} \mathrm{Js} \cdot 2.9979 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}{430 \mathrm{~nm}}-2.10 \mathrm{eV} \\
& =0.78 \mathrm{eV} \quad(\mathbf{1} \text { Point })
\end{aligned}
$$

(total 2 Points)
(d) For the cutoff wavelength:

$$
\begin{aligned}
\lambda_{\text {cutoff }} & =\frac{h c}{W_{\text {detach }}} \quad(\mathbf{1} \text { Point }) \\
& =\frac{6.626 \cdot 10^{-34} \mathrm{Js} \cdot 2.9979 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}{2.1 \mathrm{eV}} \\
& =590 \mathrm{~nm} \quad(\mathbf{1} \text { Point })
\end{aligned}
$$

(total 2 Points)

4 Radioactive decay (7 Points)

(a) The decay law applies

$$
N(t)=N_{0} e^{-\lambda t} \quad \text { (1 Point) }
$$

where N_{0} is initial quantity, N is the quantity that still remains after time t. In the half-life $t=T_{1 / 2}$, half of the nuclei decay, i.e. $N=N_{0} / 2$, so that for the decay constant we have

$$
\lambda=\frac{\ln 2}{T_{1 / 2}} \quad(\mathbf{1} \text { Point })
$$

For Po-210:

$$
T_{1 / 2}=138 \mathrm{~d} \approx 1.19 \cdot 10^{7} \mathrm{~s} \quad \text { and } \quad \lambda=5.82 \cdot 10^{-8} \mathrm{~s}^{-1}
$$

For $N_{0}=10^{6}$ nuclei and $t=24 \mathrm{~h}=86400 \mathrm{~s}$ one obtains the following according to the decay law

$$
N(86400 \mathrm{~s}) \approx 995000
$$

So in 24 h the decay:

$$
\Delta N=N_{0}-N \approx 5000 \text { Kerne } \quad(\mathbf{1} \text { Point) }
$$

The decay rate for $t=1 \mathrm{~s}$ is:

$$
A=\frac{\Delta N}{t} \approx 0.06 \mathrm{~Bq} \quad(\mathbf{1} \text { Point })
$$

(Alternative calculation with $A=\lambda \cdot N(t)$ is possible).
(total 4 Points)
(b) From the decay law follows, with $\lambda=\ln 2 / T_{1 / 2}$, for the activity as the number of nuclear decays per second:

$$
A=-\frac{\mathrm{d} N}{\mathrm{~d} t}=\lambda N_{0} e^{-\lambda t}=\lambda N
$$

thus the decay law is obtained in the form

$$
A=A_{0} e^{-\lambda t}=A_{0} e^{-(\ln 2) t / T_{1 / 2}} \quad(\mathbf{1} \text { Point })
$$

With $A=A_{F}=50 \mathrm{kBq}, A_{0}=185 \mathrm{kBq}$ and $t=n T_{1 / 2}$ (decay time), it follows that

$$
\begin{align*}
A_{0} / A_{F} & =e^{n \ln 2} \\
\rightarrow n & =\frac{\ln \left(A_{0} / A_{F}\right)}{\ln 2}=1.89 \tag{1Point}
\end{align*}
$$

For Co-60 $T_{1 / 2}=5.3 \mathrm{a}$, therefore:

$$
t=n \cdot T_{1 / 2}=10.0 \mathrm{a} \quad(\mathbf{1} \text { point })
$$

(total 3 Points)

