

U N I B A S E L Departement Physik Universität Basel Prof. E. Meyer / PD. T. Glatzel

Contact person: Miguel J. Carballido miguel.carballido@unibas.ch

Office: 1.12 Tel.: +41 (0)61 207 36 91 http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

of Biology, Pharmacy and Geoscience

Sheet 5 / 30.03.2022

Exercise 17.

A wire made of aluminum (density $\rho = 2.7 \cdot 10^3$ kg/m³) is suspended horizontally between the two poles of a horseshoe magnet, which is positioned vertically with one pole on top of the other. The wire can oscillate freely in the vertical magnetic field (flux density B = 0.08 T). Through the wire flows a current, with current density $j = 10^5$ A/m². At which angle with respect to the vertical axis of the pendulum (the so-called Lorentz swing) will the wire be in static equilibrium?

Exercise 18.

A 63 Cu-Ion (charge +e, mass $m_1 = 1.045 \cdot 10^{-25}$ kg) initially at rest is accelerated by a potential U = 2.5 kV and then deflected into a homogeneous magnetic field, which is perpendicular to the trajectory of the ion (mass spectrometer). The trajectory radius of the Cu ion is 317.3 mm.

- (a) Calculate the magnetic field strength B
- (b) What is the radius of the trajectory of a similar 65 Cu-Ion of mass $m_2 = 1.078 \cdot 10^{-25}$ kg in the same magnetic field?

Exercise 19.

The B-field of the Earth (B_H) should be compensated locally with a coil of length 2 m and 100 turns.

- (a) How large must the current in the coil be, if the *B*-field of the Earth is $B_H=2.1\cdot 10^{-5}$ T?
- (b) Which direction of the current must be chosen: I_+ or I_- ?

Discussion: **05.04.2022** / **06.04.2022**

Exercise 20.

A DC voltage of $U_0 = 133$ V at a current of $I_0 = 3.5$ A is applied through a single-layered coil, with N = 300 windings. The coil is wound around a closed ring-shaped iron core (diameter of the core $d_E = 2$ cm, diameter of the ring $d_S = 10$ cm, permeability $\mu_r = 600$). The voltage is switched off and simultaneously the coil is short-circuited. What is the magnitude of the current in the coil $t = 1 \cdot 10^{-3}$ s after switching it off?

Answers.

Exercise 17. 16.8°

Exercise 18. (a) 0.18 T (b) 322.2 mm

Exercise 19. (a) 0.33 A

Exercise 20. 2 A