

Departement Physik Universität Basel

Prof. E. Meyer / PD. T. Glatzel Contact person: Miguel J. Carballido miguel.carballido@unibas.ch

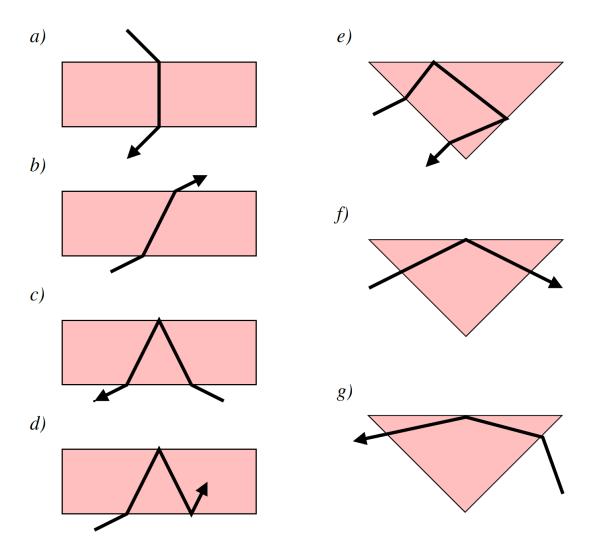
Office: 1.12

Tel.: +41 (0)61 207 36 91

http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

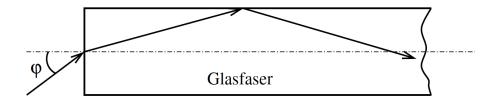

of Biology, Pharmacy and Geoscience

Discussion: 19.04.2022 / 20.04.2022

Sheet 7 / 13.04.2022

Exercise 25.

From a) to g), which optical paths through a glass plate are drawn incorrectly?



Exercise 26.

The dimensions of the rear window in a car are: $W \times H = 120 \times 45 \text{ cm}^2$. The driver sits at a distance of l = 2 m away from the rear window. How big should the rear-view mirror be such that the driver can see the entire rear window. The distance between the driver and the mirror is $l_0 = 0.5$ m.

Exercise 27.

Light is coupled into the end of a glass fiber with refractive index $n_F = 1.40$. Due to total reflection, the light can transmit inside the fiber without loss.

- (a) When the glass fiber is surrounded by air, what is the maximum incident angle φ with which the light beam is able to enter and stay inside the fiber?
- (b) How does the angle of incidence change when the glass fiber is surrounded by water?

Exercise 28.

A light wave with a wavelength of $\lambda = 750$ nm (in air) hits a glass plate (refractive index of n = 1.5) at an angle of incidence $\alpha = 45^{\circ}$ and passes through it.

- (a) What is the speed of light inside the glass plate?
- (b) What is the frequency and wavelength of the light iside the glass plate and after the glass plate?
- (c) By how many degrees is the light wave refracted when it passes from the air into the glass plate?
- (d) At what angle does the light leave the glass plate?

Answers:

Aufgabe 26. $7.5 \times 20 \text{ cm}^2$

Aufgabe 27. (a) 78.46° (b) 19.20°

Aufgabe 28. (a) $2 \cdot 10^8$ m/s (b) $4 \cdot 10^{14}$ Hz; 750 nm; 500 nm (c) 16.90° 45°