

Departement Physik
Universität Basel
Prof. E. Meyer / PD. T. Glatzel
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
UNI
Tel.: +41 (0)61 2073691
BASEL
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

for Students

of Biology, Pharmacy and Geoscience

Sheet 3 / 16.03.2022

Solutions

Exercise 9.

(a) The capacity:

$$
C_{1}=\varepsilon_{0} \frac{A}{d_{1}}=1.1 \mathrm{nF}
$$

(b) The charge stays constant, thus:

$$
\begin{gathered}
Q=U_{1} C_{1}=U_{2} C_{2} \\
C_{1}=\varepsilon_{0} \frac{A}{d_{1}} \quad \text { and } \quad C_{2}=\varepsilon_{0} \frac{A}{d_{2}}
\end{gathered}
$$

Consequently:

$$
U_{2}=\frac{U_{1} d_{2}}{d_{1}}=100 \mathrm{~V}
$$

(c) For a serial connection the following applies:

$$
\frac{1}{C_{1}}=\frac{1}{C_{x}}+\frac{1}{\varepsilon C_{1}}
$$

And therefore:

$$
C_{x}=\frac{\varepsilon C_{1}}{\varepsilon-1}=2.1 \mathrm{nF}
$$

Exercise 10.

(a) The circuit can be simplified as shown in the figure. Therefore, for the parallel connection the following applies:

$$
C_{A B}=C_{1}+C_{2}+C_{3}
$$

a)

(b) Similar to (a) the circuit can be simplified (see Figure). Then we realize that there is no potential difference at the capacitor in the middle. Thus, this capacitor can be left out for the calculation.
For the individual serial connections (top and bottom) we get:

$$
\frac{1}{C_{t, b}}=\frac{1}{C}+\frac{1}{C}
$$

Hence, for the entire circuit we have:

$$
C_{A B}=\frac{C}{2}+\frac{C}{2}=C
$$

Aufgabe 11.

a) The $20-\mathrm{pF}$-capacitor will be labelled with index 1 in the following while the $50-\mathrm{pF}$-capacitor will be labelled with index 2 .
Because no charge is lost when connecting the two capacitors, the charge of the first capacitor is equal to the sum of the charges of the connected capacitors.

$$
\begin{gathered}
Q_{1, \text { disconn }}=Q_{1, \text { conn }}+Q_{2, \text { conn }}=C_{1} U_{\text {conn }}+C_{2} U_{\text {conn }} \\
U_{\text {conn }}=\frac{C_{1}}{C_{1}+C_{2}} U_{1, \text { disconn }}
\end{gathered}
$$

Thus, for the charges on the capacitors we obtain:

$$
\begin{gathered}
Q_{1, \text { conn }}=C_{1} U_{\text {conn }}=\frac{C_{1}^{2}}{C_{1}+C_{2}} U_{1, \text { conn }}=\frac{(20 \mathrm{pF})^{2}}{20 \mathrm{pF}+50 \mathrm{pF}} \cdot 3 \mathrm{kV}=17.14 \mathrm{nC} \\
Q_{2, \text { conn }}=C_{2} U_{\text {conn }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} U_{1, \text { disconn }}=\frac{20 \mathrm{pF} \cdot 50 \mathrm{pF}}{20 \mathrm{pF}+50 \mathrm{pF}} \cdot 3 \mathrm{kV}=42.86 \mathrm{nC}
\end{gathered}
$$

b) For the electric energy it follows:

$$
E_{e l, 1, \text { disconn }}=\frac{1}{2} C_{1} U_{1, \text { disconn }}^{2}=\frac{1}{2} \cdot 20 \mathrm{pF} \cdot(3 \mathrm{kV})^{2}=90 \mu \mathrm{~J}
$$

c) After being connected the capacitors have the following energy:

$$
E_{e l, 1, \text { conn }}+E_{e l, 2, \text { conn }}=\frac{1}{2} C_{1} U_{1, \text { conn }}^{2}+\frac{1}{2} C_{2} U_{2, \text { conn }}^{2}=\frac{Q_{1, \text { conn }}^{2}}{2 \cdot C_{1}}+\frac{Q_{2, \text { conn }}^{2}}{2 \cdot C_{2}}=\frac{(17.14 \mathrm{nC})^{2}}{2 \cdot 20 \mathrm{pF}}+\frac{(42.86 \mathrm{nC})^{2}}{2 \cdot 50 \mathrm{pF}}=25.7 \mu \mathrm{~J}
$$

Exercise 12.

The case shown in the left schematic can be regarded as a parallel connection of two capacitors. The total capacity is then obtained by:

$$
C_{\text {left }}=C_{\text {air }}+C_{\text {diel. }}=\varepsilon_{0} \frac{A}{d}+\varepsilon_{0} \varepsilon_{r} \frac{A}{d}=\varepsilon_{0} \frac{0.075 \mathrm{~m}^{2}}{0.03 \mathrm{~m}}+\varepsilon_{0} \cdot 2.1 \cdot \frac{0.075 \mathrm{~m}^{2}}{0.03 \mathrm{~m}}=68.6 \mathrm{pF}
$$

The case shown in the right schematic can be regarded as a serial connection of two capacitors. Here, the total capacity is obtained by:
$C_{\text {right }}=\left(\frac{1}{C_{\text {air }}}+\frac{1}{C_{\text {diel. }}}\right)^{-1}=\left(\frac{d}{\varepsilon_{0} \cdot A}+\frac{d}{\varepsilon_{0} \varepsilon_{r} \cdot A}\right)^{-1}=\left(\frac{0.015 \mathrm{~m}}{\varepsilon_{0} \cdot 0.15 \mathrm{~m}^{2}}+\frac{0.015 \mathrm{~m}}{\varepsilon_{0} \cdot 2.1 \cdot 0.15 \mathrm{~m}^{2}}\right)^{-1}=60.0 \mathrm{pF}$

