

Departement Physik
Universität Basel
Prof. E. Meyer / PD. T. Glatzel
Contact person: Miguel J. Carballido
miguel.carballido@unibas.ch
Office: 1.12
U N I Tel.: +41 (0)61 2073691
BASEL
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics II

 for Studentsof Biology, Pharmacy and Geoscience

Sheet 10 / 04.05.2022 Solutions

Exercise 37.

For the angular magnification of the magnifying glass we have:

$$
\Gamma=\frac{s_{0}}{f}=\frac{0.25 \mathrm{~m}}{\frac{1}{12 \mathrm{dpt}}}=3
$$

Exercise 38.

The following applies to the intensity of the light I_{2} that passes through the polarization film:

$$
I_{2}=I_{1} \cos ^{2} \theta
$$

Here I_{1} is the intensity of the light before it hits the film and θ is the angle that the transmission axis forms with the horizontal. This results in:

$$
\arccos \sqrt{\frac{I_{2}}{I_{1}}}=\arccos \sqrt{0.15}=67.2^{\circ}
$$

Exercise 39.

(a) true, because the polarization axes of the last two filters are rotated by 90° to each other
(b) true, because after passing a polarizing filter twisted by 45° only exactly half of the intensity comes through $\left(\cos ^{2} 45^{\circ}=0.5\right)$
(c) false, because the polarization axes of the filters are shifted by 90°, this is impossible
(d) true, since the light is previously unpolarized
(e) true, because the polarization axes of the filters are always shifted by 45° and the light is unpolarized in the beginning

Exercise 40.

(a) See script 507-3. angle of incidence α_{B} for full polarization from Brewster's law:

$$
\tan \alpha_{B}=\frac{n_{\text {glass }}}{n_{\text {air }}} \quad \Rightarrow \quad \alpha_{B}=55.41^{\circ}
$$

(b) See script 507-7.

$$
\alpha=\varphi \cdot c \cdot d \quad \Rightarrow \quad c=\frac{\alpha}{\varphi \cdot d}=3.0 \mathrm{~g} / \mathrm{l}
$$

(c) $\alpha=0$, since the same number of levorotatory and dextrorotatory molecules are present.

