Problem 1

A primitive basis is a crystallographic basis of the vector lattice L such that every lattice vector \mathbf{t} of \mathbf{L} may be obtained as an integral linear combination of the basis vectors, $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
A primitive cell is a unit cell built on the basis vectors of a primitive basis of the direct lattice

Problem 2

The two axis here are different from each other.

C_{4}

D_{4}

$C_{3 i}\left(S_{6}\right)$
D_{4} is also called 422 because it is composed of 4 -fold rotation and 2 different 2 -fold rotation

- Central symbol: rotational symmetry around vertical axis
- Symbols on edge: rotational symmetry around horizontal axes
- Lines through centre point: mirror planes
- Inner symbols (red in these diagrams): faces on the crystal
- filled circle: lower face
- open circle: upper face

Problem 3a

$6 \times$ reflections
$3 \times \mathrm{C}_{2}$ rotations
Axis from midpoint on one side to the midpoint of the opposite side

Problem 3b

Problem 4

Obviously,
$\vec{a}=a\binom{1}{0}$

$$
\vec{b}=a\binom{\cos \theta_{b}}{\sin \theta_{b}}
$$

$$
\theta_{\mathrm{b}}=\sigma^{*} 4 \pi / 5
$$

And,
$\vec{p}=\vec{a}+\vec{b} \quad$ should still be a part of the lattice under translation operation of a Bravais Lattice

However,
$\left\lvert\, \overrightarrow{\mathrm{p} \mid}=\mathrm{a} \sqrt{\left(1+\cos \frac{4 \pi}{5}\right)^{2}+\sin ^{2} \frac{4 \pi}{5}}=0.62 \mathrm{a}<\mathrm{a}\right.$
This means that it is not a part of the lattice, which contradicts with our expectation. So we may come to the conclusion that a 5 -fold rotation symmetry is not compatible with the translation properties of a Bravais Lattice.

Problem 5

Some symmetry transformations of the crystal are also shown here:
Rotation by $\theta=60^{\circ}, \quad C_{6}=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)_{\theta=n \times 60^{\circ}}$

Mirror symmetry : $\sigma_{x}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
The conductivity tensor is invariant under these symmetry transformations of the crystal:
$\sigma=C^{-1} \sigma C \Rightarrow \sigma_{x}^{-1} \sigma \sigma_{x}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}-\sigma_{11} & \sigma_{12} \\ -\sigma_{21} & \sigma_{22}\end{array}\right)$
$=\left(\begin{array}{cc}\sigma_{11} & -\sigma_{12} \\ -\sigma_{21} & \sigma_{22}\end{array}\right) \equiv\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right)$
no info about σ_{11}, σ_{22}; but from
$\sigma_{12}=-\sigma_{12} \Rightarrow \sigma_{12}=0$
$\sigma_{21}=-\sigma_{21} \Rightarrow \sigma_{21}=0$
$\therefore \sigma_{12}=\sigma_{21}=0$
$\therefore \sigma=\left(\begin{array}{cc}\sigma_{11} & 0 \\ 0 & \sigma_{22}\end{array}\right)$
$\theta=60^{\circ}$
$\sigma=C_{6}{ }^{-1} \sigma C_{6}=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)\left(\begin{array}{cc}\sigma_{11} & 0 \\ 0 & \sigma_{22}\end{array}\right)\left(\begin{array}{cc}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$
$=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)\left(\begin{array}{cc}\frac{\sigma_{11}}{2} & -\frac{\sqrt{3} \sigma_{11}}{2} \\ \frac{\sqrt{3} \sigma_{22}}{2} & \frac{\sigma_{22}}{2}\end{array}\right)$
$=\left(\begin{array}{cc}\frac{\sigma_{11}}{4}+\frac{3 \sigma_{22}}{4} & -\frac{\sqrt{3} \sigma_{11}}{4}+\frac{\sqrt{3} \sigma_{22}}{4} \\ -\frac{\sqrt{3} \sigma_{11}}{4}+\frac{\sqrt{3} \sigma_{22}}{4} & \frac{3 \sigma_{11}}{4}+\frac{\sigma_{22}}{4}\end{array}\right)=\left(\begin{array}{cc}\sigma_{11} & 0 \\ 0 & \sigma_{22}\end{array}\right)$
e.g.from first element :
$\frac{1}{4}\left(\sigma_{11}+3 \sigma_{22}\right)=\sigma_{11}$
$3 \sigma_{22}=3 \sigma_{11}$
$\therefore \sigma_{11}=\sigma_{22}$

