Condensed matter physics 2013 Exercise 2

Release: 24. Sept. 2013
Discussion: 1. Oct. 2013

*Problem 6

Demonstrate that the atom-atom distances, the number of nearest neighbors and the filled volume ratio of the simple cubic, bcc, and fcc-structure given in the lecture notes, are correct.

*Problem 7

Sketch the (001)-, (011)- and (111)-plane of the simple cubic lattice and calculate the respective layer spacing. Determine the rotation symmetries of these planes.

*Problem 8

The following are the primitive basis vectors of a hexagonal lattice:

$$
\vec{a}_{1}=a \cdot \vec{e}_{x}, \quad \vec{a}_{2}=\frac{a}{2} \cdot \vec{e}_{x}+\frac{\sqrt{3} a}{2} \cdot \vec{e}_{y} \text { and } \tilde{\mathrm{a}}_{3}=\mathrm{c} \cdot \tilde{\mathrm{e}}_{\mathrm{z}}
$$

a) Show that the volume of the primitive cell is $\frac{\sqrt{3} a^{2} c}{2}$
b) Show that the basis vectors of the reciprocal lattice form again a hexagonal lattice, with the c-axis rotated with respect to the direct lattice.
c) Sketch the first Brillouin zone (Wigner-Seitz cell in the reciprocal lattice)) of the hexagonal space lattice.

Problem 9

Consider the plane $\left(h_{1}, h_{2}, h_{3}\right)$ in a crystal lattice
a) Prove that the reciprocal lattice vector

$$
\vec{q}=\sum_{i} h_{i} \vec{b}_{i}
$$

is perpendicular to the lattice plane $\left(h_{1}, h_{2}, h_{3}\right)$.
b) Prove that the distance between two consecutive parallel planes of the lattice is given by $d(h k l)=2 \pi /|\vec{q}|$.
c) Show that for a simple cubic lattice $d^{2}=a^{2} /\left(h_{1}^{2}+h_{2}^{2}+h_{3}^{2}\right)$.

Problem 10

Silicon (Si) is the most important material of today's semiconductor industry. Here we investigate wet chemical etching of silicon, which can be used to pattern Si-based computer chips.

Crystalline silicon forms a covalently bonded diamond-cubic-like structure. The \{111\} planes, which have the highest atom-packing density, are etched much slower than the other planes. And the sidewalls of an etched pit in single-crystal silicon (SCS) on a (100) surface will ultimately be bounded by this type of plane.

Give the edge directions of these $\{111\}$ plane-bounded inverted pyramids. What is the top angle α of the pyramid?

Figure 1: Problem 10

