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Problem 14

The figure below shows a unit cell of the KCl fcc lattice where the different colours represent
the different atoms and the inter-atom distance (nearest neighbours) is a/2.

a

a/2

The definition of the structure factor is

S( ~K) =
∑
j

fj( ~K)e−i
~K·~xj

with the atomic scattering factors (or atomic form factors) fj( ~K) (essentially the Fourier trans-
form of the electron density of a single atom). For simplicity we assume that the form factor is
independent of ~K and identical for identical atoms, i.e. fj = f+ for K and f = f− for Cl. Then
we can write:

S( ~K) =
∑
j

fje
−i ~K~ξj

where ~K are reciprocal lattice vectors. The atom positions ~ξj can be found using the figure
above (in units of a/2):

~ξ1 =

 0
0
0

 ~ξ2 =

 1
0
0

 ~ξ3 =

 1
1
0



~ξ4 =

 0
1
0

 ~ξ5 =

 0
1
1

 ~ξ6 =

 0
0
1


~ξ7 =

 1
0
1

 ~ξ8 =

 1
1
1


The position with indices 2, 4, 6 and 8 are, for example, K atoms, while 1, 3, 5 and 7 are Cl

atoms. The components of ~K take on half-integer values in units of 4π/a, or integer values in



2π/a, so that the arguments of the exponential function becomes −i ~K ·~ξj = −i2πa

 h1
h2
h3

· a2~ξj =

−iπ

 h1
h2
h3

 · ~ξj = −iπ~h~ξj with h1,2,3 ∈ Z

The individual terms can be directly calculated:

j = 1: e−iπ
~h~ξ1 = e0 = 1

j = 2: e−iπ
~h~ξ2 = e−iπh1

j = 3: e−iπ
~h~ξ3 = e−iπ(h1+h2)

j = 4: e−iπ
~h~ξ4 = e−iπh2

j = 5: e−iπ
~h~ξ5 = e−iπ(h2+h3)

j = 6: e−iπ
~h~ξ6 = e−iπh3

j = 7: e−iπ
~h~ξ7 = e−iπ(h1+h3)

j = 8: e−iπ
~h~ξ8 = e−iπ(h1+h2+h3)

⇒ S(~h) = f+[1+e−πi(h1+h2)+e−πi(h2+h3)+e−πi(h1+h3)]+f−[e−πih1+e−πih2+e−πih3+e−πi(h1+h2+h3)]

If all hp are even the exponents are multiple of 2π and one obtains

S(~k) = f+[1 + 1 + 1 + 1] + f−[1 + 1 + 1 + 1] ∝ (f+ + f−)

If all hp are odd, the sums of two hp are even and give multiples of 2π, while the terms containing
one or three hp are odd multiples of π. This yields

hi = 2ni + 1, ni ∈ Z

S(~k) = f+[1 + 1 + 1 + 1] + f−[−1− 1− 1− 1] ∝ (f+ − f−)

If hi contains both, odd and even terms the −1 and +1 compensate each other:

S(~k) = f+ · 0 + f− · 0 = 0

If we assume that we have ideal ionic binding between the atoms the occupations of the
atomic orbitals in KCl are the same for both atomic species, i.e. K+: 3s23p6 and Cl−: 3s23p6.
Assuming that the charging of the atoms does not significantly change the orbitals, we therefore
would expect that the scattering cross sections of the atoms are also identical:

f+ = f−

Therefore, we will only obtain reflections from lattice planes with even indices. The ones with
odd or with a mixture of odd and even indices are not allowed due to destructive interference.

For NaCl the structure is the same as for KCl, but the population of the atomic orbitals is
not the same for the different atoms, i.e. Na+: 2s22p6 and Cl−: 3s23p6. Therefore f+ 6= f−

and reflections are allowed for lattice planes with all indices odd or all even. Only those with a
mixture of odd and even have destructive interference.



Problem 15

In a three dimensional isotropic medium (approximation!) Young’s modulus E (not to be
confused with an energy!) is defined by the (macroscopic) relative length change ∆L/L as a
result of a force F exerted on an area A: F/A = E ·∆L/L. We can describe the same change
in the length by an effective spring constant f , which yields F = f∆L. If we reduce our view
to a single unit cell, we can insert A = a2 and L = a and find E = f ·L/A = f/a. Inserting the
given value for E yields f = 30 N/m.

The above derivation of a spring constant is for a deformation along one axis. Vibrations take
place in all three dimensions and we already assumed an isotropic medium, i.e. f is the same in
all directions. Therefore we obtain three degrees of freedom which are excited by temperature
to an energy of 1

2kBT . From the equipartition theorem we thus obtain for the average energy
of the motion in the harmonic potential that corresponds to f :

Evib =
1

2
f < |~r|2 >=

3

2
kBT

√
< ~r2 > =

√
3kBT

f

At T = 300 K: √
< ~r2 > = 0.2 Å

At T = 1687 K: √
< ~r2 > = 0.48Å

The Lindemann Criterion states that at the melting temperature the root mean square of
the vibration amplitude is a universal fraction C of the inter-atomic distance a:

√
< ~x2 > = Ca.

Here we find

C =

√
< ~x2 >

a0
=

0.48

3.13
= 0.15

i.e. 15% of the atomic distance. We note that we made some very rough approximations in
the calculations (a and E along [111], but neglected other directions, ...). Often the values lie
around 30%.

Problem 16

Referring to an FCC lattice, the basis of diamond is 000; 1
4
1
4
1
4 . Thus

Sbasis = 1 + e−i(π/2)(v1+v2+v3)

The total structure factor is

S(v1v2v3) = Slattice · Sbasis

For the FCC lattice we have the sites 000; 01
2
1
2 ;1201

2 ; 1
2
1
20. Thus

Slattice = Nf [1 + e−i(π)(v2+v3)+e−i(π)(v1+v3)+e−i(π)(v1+v3)]

The result is given by the product

S = Nf [1 + ei(π)(v1+v2)+ei(π)(v1+v3)+ei(π)(v2+v3)][1 + ei(π)(v1+v2+v3)/2]



Problem 17

We will discuss two ways to obtain the Debye-Waller factor. For the one required in the posed
problem, we assume that the positions of the atom positions are ‘blurred’ by the temperature
to a Gaussian distribution with a standard deviation σ. This can be described in the following
way: The lattice is given by a sum of Dirac-Delta functions:

g(~r) =
∑

δ(~r − ~rj), ~rj ∈ G

each of which is broadened by folding with a normalized Gaussian shape function:

w(~r) = Ne−
|~r|2

2σ2 =
1

(σ
√

2π)3
e−

x2+y2+z2

2σ2

The mean square expectation value, < r2 >, of the deviation r of the atom from its lattice
position is given by

< r2 >=

∫ ∞
0

∫ π

0

∫ 2π

0
r2 · w(r) · r2 sin(θ)drdθdφ =

√
2

π

1

σ3

∫ ∞
0

r4e−
r2

2σ dr︸ ︷︷ ︸
3
√

π
2
σ5

= 3σ2

(integrals in spherical coordinates and wikipedia.org/wiki/Lists of integrals for the final integral)
The distribution of the atomic position around a lattice site is then given by w ∗ g, where ∗

denotes the convolution. To obtain the electron density, in addition one has to convolute this
with the electron density of a single atom ρat (the convolution is associative and we assume that
the atoms do not overlap):

ρ = ρat ∗ w ∗ g

The scattering amplitude is essentially the Fourier transform of the electron density:

A(~q) = F (ρat ∗ w ∗ g) = F (ρat) · F (w) · F (g)

= fj · F (w) ·
∑

δ(~q − ~kj), ~kj ∈ reciprocal lattice

(Here we use that the Fourier transform of a convolution is the product of the individual transfor-
mations, the definition of the atomic form factor fj , and that the transform of the direct lattice
is the reciprocal lattice.) The Fourier transform of a Gaussian function is again a Gaussian:

F
(

1

σ
√

2π
e−

x2

2σ2

)
= e−

σ2q2x
2

Therefore we find

F(w) = e−
σ2

2
(q2x+q

2
y+q

2
z) = e−

1
2
σ2q2 = e−

1
6
<r2>q2

This is the additional factor mentioned in the script, page 2.20. The Debye-Waller factor reads

D(~q) = |F(w)|2 = e−
1
3
<r2>q2

.
We now discuss a second derivation of the Debye-Waller factor (see lecture). This time we

perform a time average of the atom motion. Inserting the position of an atom ~x(t) = ~xj + ~r(t)
into the expression of the structure factor and averaging in time yields:

A(~q ) = fj · e−i~q·~xj · < e−i~q·~r(t) >≡ A0(~q )· < e−i~q·~r(t) >



The exponential function can be written as a Taylor expansion and the time average can be
performed over the individual parts:

< e−i~q·~r(t) >=< 1− i~q · ~r(t)− 1

2
(~q · ~r(t))2 + ... >≈< 1− 1

2
(~q · ~r(t))2 >

The last step uses that < ~q~r >= ~q < ~r >= 0 (motion around equilibrium position). The time
average of the second term can be obtained as follows:

<
1

2
(~q · ~r(t))2 >=<

1

2
q2r2 cos2(θ) >=

1

2
q2 < r2 >< cos2(θ) >

where θ is the angle between the two vectors ~q and ~r, which takes on all values between 0 and
360◦ randomly (thermal motion). The averaging is done easiest in spherical coordinates:

< cos2(θ) >=
1

4π

∫ π

0

∫ 2π

0
cos2(θ) · sin(θ)dθdφ =

1

3

.
Inserting above yields the Debye-Waller factor:

D(~q) =
|A|2

|A0|2
= e−

1
3
<r2>q2

Problem 18

The goal is to estimate the mean square value of the atomic vibrations. The assumption is that
the atoms reside in a confining harmonic potential determined by the characteristic frequency ω.
This is related to the displacement as follows: For a harmonic oscillator the equation of motion
is

mü = −uk

with k the ‘spring constant’. This can be solved using the Ansatz

u(t) = u0 sinωt

⇒ −mw2u = −uk

⇒ k = mw2

The average potential energy reads (it is not necessary to explicitly evaluate the averaging):

Epot =
1

2
k < u2 >=

1

2
mω2 < u2 >=

3

2
kBT

The last step is due to the fact that at reasonably high temperatures every degree of freedom
(three directions in three dimensions) obtains 1

2kBT due to thermal excitation.
From this we obtain

< u(t)2 >=
3
2kBT
1
2mω

2
=

3kBT

mω2
,

which can be inserted into the Debye-Waller factor (see problem 17):

I = I0e
− 1

3
G2<U(t)2>

I = I0e
− kBT
mω2

G2

,

where G = |~G is the amplitude of the scattering vector in the reciprocal lattice.
Inserting the numbers given in the problem:



mCu = 0.0635 kg/mol = 1.05× 10−25 kg/atom

a = 3.61 Å

ω = 1014 s−1

T = 4 K or T = 300 K

G[110] = 2π
a

√
2 = 2.46× 1010 m−1

Therefore:

T = 4 K: I
I0
≈ 1.00

T = 300 K: I
I0
≈ 0.998

At first sight, it seems not worth to perform XRD experiments at low temperatures because
the intensity is not improved significantly for this scattering vector. However, for higher indices
in the reciprocal lattice, this is not correct anymore. For example:

G[666] = 2
√
3×62π
a = 12

√
3π
a = 1.81× 1011 m−1

T = 4 K: I
I0
≈ 0.998

T = 300 K: I
I0
≈ 0.879


