Übungen zur Einführung in die Physik I

für Studierende der Physik, Nanowissenschaften, Informatik, Chemie und Mathematik

22. 10. 2013

Abgabe: 29.10. bis 18:00 in den Briefkästen,

Bitte die Übungsgruppenleiter auf das Blatt schreiben!!

Zentrifugal-/Coriolisbeschleunigung (4 Punkte)

- a) Berechnen Sie die durch die Erdrotation hervorgerufene Zentrifugalbeschleunigung als Funktion der geographischen Breite (Erdradius 6400 km). Wie gross ist der Gewichtsverlust am Äquator im Vergleich zum Nordpol?
- b) Bestimmen Sie die Richtung und den Betrag der Coriolisbeschleunigung eines Körpers, der sich mit 200 km/h in Nord-Süd-Richtung bewegt, als Funktion der geographischen Breite. Wie schnell muss sich ein Körper in unseren Breitengraden bewegen, damit die Coriolisbeschleunigung ein Zehntel der Erdbeschleunigung ausmacht?

Schwungrad (4 Punkte)

Ein Schwungrad rotiert mit der Umdrehungsfrequenz v0=20s-1 um seine Symmetrieachse. Bezüglich dieser Achse hat es das Trägheitsmoment J=60kgm2. Das Schwungrad wird in der Zeitspanne T=1min bis zum Stillstand abgebremst. Der Bremsvorgang wird durch das zheitlic konstante Drehmoment M bewirkt.

- a) Berechnen Sie das abbremsende Drehmoment M.
- b) Berechnen Sie die durschnittliche Leistung P, die während der Abbremszeit in Wärme umgesetzt wird.
- c) C) Berechnen Sie die Anzahl N der Umdrehungen des Schwungrades für den Bremsvorgang.
- d) D) Zeigen Sie, dass die kinetische Wnergie Wk des rotierenden, noch ungebremsten Schwungrades gleich dem Produkt aus dem bremsenden Drehmoment M und dem Winkel ist, um den sich das Schwungrad seit Beginn des Bremsvorgangs bis zum Stillstand gedreht hat.

3. Erde 4 (4 Punkte)

Wie gross sind Trägheitsmoment, Drehimpuls und Rotationsenergie der Erde,

- a) Wenn ihre Dichte ρ_0 als homogen angenommen wird?
- b) Wenn für $r \le R/2$ die homogene Dichte ρ_1 doppelt so hoch ist wie ρ_2 für r > R/2
- c) Wie würde sich die Winkelgeschwindigkeit der Erde ändern, wenn alle Menschen (n=5*10⁹ mit je 70kg) zur selben Zeit synchron am Äquator nach Osten mit der Beschleunigung a=2m/s² zu laufen beginnen würden?

4. Na₃ Molekül (4 Punkte)

Man berechne die Rotationsenergie des Na₃-Moleküls, das aus drei Na-Atomen (m=23amu) besteht, die ein gleichschenkliges Dreieck mit dem Scheitelwinkel $\alpha=79^{\circ}$ und einer Schenkellänge d=0,32 nm bilden, bei Rotation um jeweils eine der drei Hauptträgheitsachsen mit dem Drehimpuls $L=\sqrt{l(l+1)}\hbar$.