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Solution 23

We find the expression for the susceptibility in the limit of k → 0 in the script on page 3.19:

χ =

2q2N
mε0

ω2
0 − ω2 + iΓ

. (1)

We calculate the reflection coefficient R(ω) =
∣∣∣n2−n1
n2+n1

∣∣∣2, which is Fresnel’s equation for TE (trans-

verse electric polarized) light and perpendicular incidence. We assume a crystal in vacuum or

air, so that n1 = 1 and n2 ≡ n, which simplifies the reflection coefficient to R(ω) =
∣∣∣n−1
n+1

∣∣∣2. The

relation between susceptibility and the refractive index is n =
√

1 + χ.

An analytic solution is given below, but we first plot the solution using MATLAB (any other
mathematics software does the job almost as well). Here is the most rudimentary code:
i = sqrt(-1);

w = 0:0.01:2;

Gamma= 0.1;

chi = 1./(1-w.∧2+i*Gamma);
n = sqrt(1+chi);

R = abs((n-1)./(n+1))∧2;
plot(w,R*100,’r’)
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In the plots above we find the resonances in χ for Γ = 0.1, similar as in the script, and
the reflection coefficient R for different values of Γ, as indicated. For not too lossy materials
(small Γ) we obtain an extended frequency range in which all the radiation is reflected, i.e. for
frequencies slightly larger than the resonance frequency of the phonons (oscillator). The physical
meaning of this curve shape is that below the resonance (ω < ω0) the photon energy is too small
to excited the phonons, and at large frequencies there is too much energy. Only slightly above
ω0 the optical phonons can be excited with large amplitudes and the oscillating dipole re-emits
photons in the reflection process.



Now we also develop an analytical solution. We start with Eq. (1) and separate this expression
in real and imaginary part:

χ =

2q2N
mε0

ω2
0 − ω2 + iΓ

· (ω2
0 − ω2)− iΓ

(ω2
0 − ω2)− iΓ

=

2q2N
mε0

(ω2
0 − ω2)− i 2q2NΓ

mε0

(ω2
0 − ω2)2 + Γ2

=

2q2N
mε0

(ω2
0 − ω2)

(ω2
0 − ω2)2 + Γ2︸ ︷︷ ︸

=χ1

+i

−2q2NΓ
mε0

(ω2
0 − ω2)2 + Γ2︸ ︷︷ ︸

=χ2

:= χ1 + i χ2

to get n we need : n =
√

1 + χ =
√

1 + χ1︸ ︷︷ ︸
=x

+i χ2︸︷︷︸
=y

and z = x+ iy = riϕ

we get r from r = |z| =
√
x2 + y2 and ϕ from ϕ = arg z

⇒ here r is : r =
√

(1 + χ1)2 + χ2 and ϕ = arctan
y

x
= arctan

χ2

1 + χ1

⇒ n =

√√
(1 + χ1)2 + χ2

2 · exp[i arctan(
χ2

1 + χ1
)]

= [(1 + χ1)2 + χ2
2]

1
4︸ ︷︷ ︸

=A

·exp[i
arctan( χ2

1+χ1
)

2︸ ︷︷ ︸
=B

]

= A · exp(iB)

⇒ n− 1

n+ 1
=
Ae(iB) − 1

Ae(iB) + 1

And again we have to seperate this expression in real and imaginary part:

n− 1

n+ 1
=

(Ae(iB)− 1)(Ae(−iB) + 1)

(Ae(iB) + 1)(Ae(−iB) + 1)
=
A2 +AeiB −Ae−iB − 1

A2 +AeiB +Ae−iB + 1

=
A2 +A(eiB − e−iB)− 1

A2 +A(eiB + e−iB) + 1

with eiB = cosB + i sinB and e−iB = cosB − i sinB

⇒ n− 1

n+ 1
=
A2 + i 2A sinB − 1

A2 + 2A cosB + 1
=

A2 − 1

A2 + 2A cosB + 1
+ i

2A sinB

A2 + 2A cosB + 1

⇒ R =

∣∣∣∣n− 1

n+ 1

∣∣∣∣2 =
(A2 − 1)2

(A2 + 2A cosB + 1)2
+

(2A sinB)2

(A2 + 2A cosB + 1)2

⇒ R =
(A2 − 1)2 + 4A2 sin2B

(A2 + 2A cosB + 1)2



Solution 24

The Eigenvalues of a 1 dimensional harmonic oscillator are (see skript):

En = (n+
1

2
)~ω

⇒ for the 2 dimensional case: En = Enx + Eny = (nx + ny + 1)~ω

This means, the spectra of a 2 dimensional oscillator contains discrete energy levels seperatet
by ~ω!
The quantum numbers for the first 5 eigenstates and their degeneracy are:

• n = 0→ nx = 0, ny = 0→ (0, 0) no degeneracy

• n = 1 (0,1) (1,0) 2-fold degenerate

• n = 2 (2,0) (0,2) (1,1) 3-fold degenerate

• n = 3 (3,0) (0,3) (1,2) (2,1) 4-fold degenerate

• n = 4 (0,4) (4,0) (2,2) (1,3) (3,1) 5-fold degenerate

• n = 5 (0,5) (5,0) (3,2) (2,3) (4,1) (1,4) 6-fold degenerate

Solution 25

We look at N atoms on a chain (or N unit cells in 1D) at a nearest neighbor distance a
(lattice constant). In 1D each atom has only one spatial degree of freedom, so that we expect
N eigenmodes and thus N different k-values that can be folded back into the first Brillouin
zone. Since the chain length is L = Na, the spacing in k-space is ∆k = 2π

L . Intuitively, by the
definition of the Debye wave vector kD (or the Debye frequency ωD), all states from −kD to +kD

are occupied, so that

N =
2kD

∆k
=
kDL

π

and

kD =
Nπ

L

This can also be obtained more formally by noting that the density of states in the k-space
is one state per 2π

L , i.e. ρk = L
2π , and

N =

∫ kD

−kD
ρk dk = 2

∫ kD

0
ρk dk = 2

∫ kD

0

L

2π
dk = kD ·

L

π
.

We obtain the Debye frequency ωD from the dispersion relation ω = ck:

ωD = ckD =
πcN

L

The density of states in energy is then given by

DoS =
1

L

dN

dωD
=

1

πc
.



Solution 26

A single harmonic oscillator in three dimensions consists of three independent one-dimensional
harmonic oscillators with the energy eigenvalues

En = ~ω(n+
1

2
), n ∈ N0

The specific heat is defined as:

cV =

(
∂U

∂T

)
V=const.

with U the internal energy of the system.
To calculate U we need the relative occupation probabilities of an energy level n and the

ground state 0 is given by the Boltzmann distribution, pn
p0

= e
−En−E0

kBT . First, we look at the
internal energy of a single one-dimensional oscillator, U1D, which is given by the expectation
value of the energy, measured with respect to the ground state energy E0 (see also statistical
mechanics, the denominator essentially normalizes the probabilities):

U1D =

∑∞
n=0 pn · (En − E0)∑∞

n=0 pn
=

∑∞
n=0 p0e

−n·~ω
kBT n · ~ω∑∞

n=0 p0e
−n·~ω

kBT

=

~ω
∑∞

n=0 n

[
e
− ~ω

kBT

]n
∑∞

n=0

[
e
− ~ω

kBT

]n
The numerator and denominator can be evaluated using (e.g. from Wikipedia):

∞∑
n=0

kzk =
z

(1− z)2
and

∞∑
n=0

zn =
1

1− z
(geometrical series)

Inserting z = e
− ~ω

kBT we find

U1D = ~ω
z

1− z
= ~ω

1

z−1 − 1
= ~ω

1

e
~ω

kBT − 1

The total internal energy of a three-dimensional oscillator is the sum of three identical
individual oscillators: U3D = 3U1D = 3~ω

e
~ω

kBT −1

. From this expression follows the specific heat at

constant volume (this means that the geometric boundary conditions of the states and thus the
states do not change):

cV =

(
∂U3D

∂T

)
V

=
3(~ω)2

kBT 2

e
~ω

kBT[
e

~ω
kBT − 1

]2

For kBT >> ~ω, i.e. in the high-temperature limit, the exponential function can be de-

veloped into a Taylor series: e
~ω

kBT ≈ 1 + ~ω
kBT

(the numerator goes to 1) and one recovers the
classical result

lim
T→∞

cV = 3kB

For kBT << ~ω the exponential function grows much larger than 1, which then can be
neglected in the denominator:

lim
T→0

cV = lim
T→0

3~ω
kBT 2

1

e
~ω

kBT

= 0

The last step follows from the fact that the exponential function diverges faster than any poly-
nomial.


