Release: 5. Nov. 2013 Discussion: 12. Nov. 2013

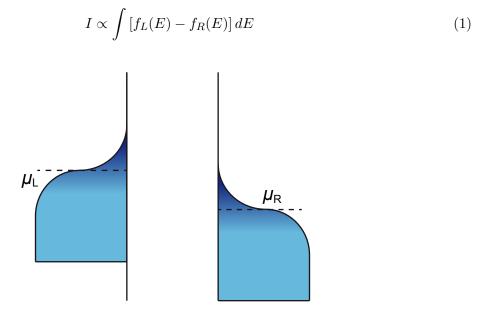
*Problem 30

In graphene, a two dimensional (2D) sheet of hexagonally packed carbon atoms, the dispersion relation is given by $E = \hbar v_F |\vec{k}|$.

- a) Draw this dispersion relation in the space (k_x, k_y, E) .
- b) Calculate the density of states $\rho(E)$ of graphene. Compare your result with the density of states of a 2D electron gas with quadratic dispersion relation (See script 4.14-4.16)

*Problem 31

Consider a 3-dimensional metal with n = N/V free electrons per volume unit. We will consider free electron theory and the temperature T = 0.


- a) Calculate the Fermi energy E_F expressed by n, \hbar, m_e (the electron mass).
- b) Show that the total energy E of the electrons is given by $E = 3/5NE_F$. Aluminum has a density of $2.70 \times 10^3 \text{ kg/m}^3$, and its molar mass is 26.98 g.
- c) Calculate the number of aluminum atoms per unit volume (i.e. cubic nanometer)
- d) Use the fact that the Fermi energy is 11.63 eV for Al and the electron mass is $m_e = 9.11 \times 10^{-31}$ kg to find the number density of free electrons.
- e) Combine your results to estimate the number of conduction electrons per atom.
- f) For Aluminum, the length of the side of the face centered cube is 4.05×10^{-10} m. At zero temperature T = 0, the inverse compressibility is defined as $B = -V \left(\frac{\partial p}{\partial V}\right)_N$, where the pressure $p = -\left(\frac{\partial E}{\partial V}\right)_N$. Calculate the electronic contribution to compressibility for the aluminum in $[m^2/N]$.

Problem 32

Look into the Sommerfeld expansion to derive the temperature dependence of the chemical potential μ of a Fermi gas. Use standard textbooks (eg. Ashcroft & Mermin).

Problem *33

Consider two Fermi gases at respective potential μ_L and μ_R with constant density of states which are at the same temperature T and separated by a tunnel barrier. Taking into account the Pauli principle, show that the total current will follow this equation:

