Thin Film Deposition

Sputtering in Gasentladung

- 1. Erzeugung von Ionen in einem Plasma
- 2. Beschleunigung der Ionen im elektrischen Feld
- 3. Aufprall der Ionen auf abzuscheidendes Schichtmaterial (Target) => Sputtering
- 4. Herausgeschlagene (gesputterte) Teilchen fliegen vom Target zum Substrat
- 5. Target-Atome schlagen sich als feine "Stäube" auf Substrat nieder

Sputtering process

Sputtering yield

Herstellung von Nanostrukturen/HS2013

Sputtering yield

N. Laegried and G. K. Wehner, J. Appl. Phys. 32 (365) 1961.

Energie der gesputterten Teilchen: Thompson Distribution

Energie der gesputterten Teilchen: Thompson Distribution

Herstellung von Nanostrukturen/HS2013

Thornton's structure zone diagram

J.A. Thornton, Journal of Vacuum Science and Technology 11 (1974) 666.

Magnetron sputtering

- längere Verweildauer
- mehr Stösse zwischen Elektronen und Prozessgas => höhere Ionisierungsgrad
- Abscheidungsrate steigt bis zu einer Grössenordnung

Large-Area Magnetrons

Reactive Sputtering

Hysteresis

Plasma Emission Spectroscopy

Plasma Emission Spectroscopy

- Wavelength: elements species
- Intensity: plasma parameters, density of neutrals, ion and electrons
- Full Width Half Maximum: broadening mechanism (particle temperature)

Bogenentladung

Metaldroplets in Al₂O₃ Schicht, die durch Bogen verursacht wurden (dc Sputtering)

P.J. Kelly and R.D. Arnell in Vacuum 56 (2000) 159.

J. O'Brien and P.J. Kelly in Surface and Coatings Technology 142-144 (2001) 621.

Bogenentladung

$$C = \varepsilon_r \varepsilon_0 \frac{A}{h}$$

$$V = \frac{q}{C} = \frac{J \cdot A \cdot t}{C} = \frac{J \cdot t \cdot h}{\varepsilon_r \varepsilon_0}$$

$$E = \frac{V}{h} = \frac{J \cdot t}{\varepsilon_r \varepsilon_0}$$

$$E = E_b \quad \text{Durchbruchfeld}$$

$$t = t_b$$

Für Al₂O₃

$$E_b = 10^6 \,\text{V/cm}, \,\varepsilon_r = 10, J = 100 \,\text{mA/cm}^2, t_b = 8.85 \,\mu\text{s}$$

Herstellung von Nanostrukturen/HS2013

Gepulstes Sputtering

Herstellung von Nanostrukturen/HS2013

Twin Magnetron Sputtering

Herstellung von Nanostrukturen/HS2013

RF Sputtering System

- frequency 13.56 MHz
- e⁻ trapped for a longer time
 - \rightarrow more collision
- increased discharge density

Co-Sputtering

Co-Sputtering: Ring magnetron

Picture from A. Romanyuk et al., Sol. En. Mat. Sol. Cells 91 (2007) 1831.

- verbesserte Homogenität
- breiterer Konzentrationsbereich

3D Nanostructured Hard Coatings

Si₃N₄ content [mole%]

Picture courtesy of J. Patscheider (EMPA) adapted from S. Veprek et al., Surf. Coat. Technol 86-87 (1996) 394.

- Dislocation barrier due to $G(TiN) \neq G(Si_3N_4)$
- d_{min} for dislocation formation $\approx 10 15$ nm
- => no dislocations at d = 5 nm!
- interfaces inhibit grain boundary sliding

Ti-B-N Nanocomposite

J. Green et al. in J. Appl. Phys. 100 (2006) 044301.

High Power Impulse Sputtering (HIPIMS)

Vorteile:

- hohe Ionisationsrate
- dichte Schichten

Nachteile:

- Upscaling
- Prozesskontroll

Herstellung von Nanostrukturen/HS2013

Energy distribution: Cu

D. Horwat and A. Anders, Appl. Phys. Lett. 97 (2010) 221501.

Anders's structure zone diagram

Abscheidung durch Ionenstrahl

Vorteile:

- niedriger Druck
- kontrollierte lonenenergie
- wenige Heizung durch e- Beschuss

Nachteile:

- grossflächige Abscheidung
- Kontaminationen
- Zuverlässigkeit

Filtered Cathodic Arc Deposition

PD Dr. Andriy Romanyuk

Filtered Cathodic Arc Deposition

Anwendungen:

- Festplatten
- Mikroelektronik
- Hartstoff und Verschleissschutzschichten auf Werkzeugen

Chemical Vapor Deposition (CVD)

- Reaktionsgase werden gasförmig (vapor) zugeführt
- abgeschiedene Schicht ist Ergebnis einer chemischen Reaktion dieser Gase
- Reaktion wird durch Energiezufuhr angeregt
- gasförmige Reaktionsprodukte werden durch Gasregelsystem abtransportiert

Chemical Vapor Deposition (CVD)

- 1. Transport der Reaktanten durch **erzwungene Konvektion** in die Abscheide-Region
- 2. Transport der Reaktanten durch **Diffusion** durch die Grenzschicht hindurch zur Substratoberfläche
- 3. Absorption der Reaktanten an der Substratoberfläche
- 4. Oberflächenreaktion: Dissoziation der Moleküle, Oberflächendiffusion der Radikale, Einbau der Radikale in den Festkörperverband, Bildung der flüchtigen Reaktionsnebenprodukte
- 5. Desorption der flüchtigen Reaktionsnebenprodukte
- 6. Transport der Reaktionsnebenprodukte mittels Diffusion durch Grenzschicht
- 7. Abtransport der Reaktionsnebenprodukte durch erzwungene Konvektion

Rate des Schichtswachstum

- Bei niedriger Prozesstemperatur bzw. niedrigem Prozessdruck:
 - Reaktionslimitierte
 Prozessführung

- Bei hoher Prozesstemperatur bzw. hohem Prozessdruck:
 - Transport- oder diffusionslimitierte Prozessführung

Woher kommt die Grenzschicht?

- Die Geschwindigkeit einer Strömung fällt an der Oberfläche zu einem Festkörper auf Null ab
- Reaktionspartner können durch konvektive Strömung nur in die Nähe der Grenzschicht transportiert werden und müssen den Rest des Weges durch Diffusion zurücklegen

Dicke der Grenzschicht

- η, ρ, V = Viskosität, Dichte, Geschwindigkeit des Reaktanten
- x = laterale Position; L = Abmessung des Substrattellers

Diffusion durch der Grenzschicht

Diffusion der Reaktanten zur Oberfläche

- Φ = Massenfluss der Reaktanten
- D = Diffusionskoeffizient

Mit dem Modell der Grenzschicht ergibt sich:

$$\Phi = \frac{3}{2} D\Delta c \sqrt{\frac{\rho V}{\eta L}}$$

 $\Phi = -D\frac{dc}{dz}$

Marc Madou, Fundamentals of microfabrication

- D = druckabhängig
- L = abhängig von Geometrie des Reaktors

Diffusion durch der Grenzschicht

Herstellung von Nanostrukturen/HS2013

Energiezufuhr bei CVD

Thermische Energiezufuhr

- Thermische Energiezufuhr ist Standard
- Induktions-, Strahlungs-, oder Widerstandsheizung des Substrates

Elektrische Energiezufuhr (Plasma):

 Ein Teil der Reaktionsenergie wird von einem Plasma geliefert, daher Plasma Enhanced CVD (PECVD)

Optische Energiezufuhr (Laser):

 Ermöglicht 3D-Schichtwachstum bei niedrigen Temperaturen

Justyna K. Gansel et al. Science **325** (2009) 1513 PD Dr. Andriy Romanyuk

Atmospheric and Low Pressure CVD (APCVD & LPCVD)

Atmospheric Pressure CVD (APCVD)

- Typischer Druckbereich: ca. 100 kPa (=Atmosphere) 10 kPa
- Typischer Reaktionsführung: Transport-/Diffusionslimitiert

Anwendung:

- Abscheidung von SiO₂ Schichten bei 300°C bis 400°C
- Epitaxie von Silizium-Schichten bei > 850°C

Low Pressure CVD (LPCVD)

- Typischer Druckbereich: ca. 100 10 Pa
- Typischer Reaktionsführung: Reaktionslimitiert

Anwendung:

- LPCVD Polysilizium und SiO₂
- Temperatur liegt im Bereich von 400°C bis 700°C

Plasma Enhanced CVD (PECVD)

Prozess:

- Prozessdruck: 10 500 Pa
- Prozesstemperatur: 250°C 400°C
- Radikale des Prozessgas sind sehr reaktiv => reagieren auf der Oberfläche

Typische Schichten:

- Si₃N₄, SiO₂, SiC
- Schichten sind meistens nicht stöchiometrisch korrekt (Ionen- Bombardement, Einbau von inert Gas)

Epitaxie

Homoepitaxie: Aufwachsen von Schichten aus gleichem	Material Image: Ima
 Heteroepitaxie: Aufwachsen von Schichten aus unterschiedlichem Material 	SiGe Image: sign state sta
verspanntes SiGe (pseudomorph)	relaxiertes SiGe
	$\circ \circ \circ \bullet \circ \circ \circ \bullet \circ$

Epitaxie-Verfahren

CVD-Verfahren (z.B. APCVD)

Liquid Phase Epitaxie (LPE)

 Wafer wird in Schmelze eingetaucht und unter kontrollierten Bedingungen herausgezogen

Molecular Beam Epitaxie (MBE)

- Prozessierung im Höchstvakuum
- Molekularstrahl wird rasterförmig über Oberfläche gescannt
- Wachstumprozess lässt sich dafür Atomlagengenau steuern

<u>Anwendungsbereiche:</u> double heterostructure laser, quantum well laser, quantum cascade laser, separate confinement heterostructure lasers, distributed feedback lasers, vertical-cavity surface-emitting lasers external-cavity diode lasers

Spin Coating

- Flüssiges Medium in Substratmitte aufbringen
- Zentrifugalkräfte verteilen das Medium gleichmässig auf Substrat

Langmuir-Blodgett

- Verfahren zum Auftragen einzelmolekularer Schichten
- Substanz mit ...
 - ... hohem Molekulargewicht
 - … aus polaren Molekülen
 - ... wird in leicht flüchtigem Lösungsmittel gelöst

Poly(styrene-b-2-vinyl pyridine)

The Miccelar Method

Herstellung von Nanostrukturen/HS2013

Technology

Herstellung von Nanostrukturen/HS2013

Assembly and Etching

Poly(styrene-b-2-vinyl pyridine): Size-Distance Variation

Gold Particles on Silicon Wafer

Herstellung von Nanostrukturen/HS2013

Size Distribution

Chemical State

G. Kästle, H.-G. Boyen et al., Advanced Functional Materials 13 (2003) 853. Herstellung von Nanostrukturen/HS2013

Compound Particles

Herstellung von Nanostrukturen/HS2013