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Discussion: 26. Nov. 2013

Solution to problem 38

The Landau level filling factor ν in a two-dimensional electron gas (2DEG) is given, for example,
by the ratio between the electron density n and the density of flux quanta B/(h/e) = eB/h:
ν = nh

eB . The longitudinal resistance Rxx at low magnetic fields has SdH minima at integer filling
factors, because backscattering is reduced due to the formation of edge states. At higher fields
extended zero-resistance intervals develop which makes it difficult to find the integer value. The
corresponding absolute number can be found by counting from the quantized Hall resistance
plateaus at higher fields with Rpxy = h

e2
1
p . The minima are labeled in the inset of the figure.

From this, one can extract for each integer νi the values 1/νi and the corresponding magnetic
field Bi. Plotting

1

νi
=
eBi
nh

one finds a linear relation between the two variables which contains only the electron density n
as free parameter, which determines the slope of the curve. One finds n = 2.5 · 1015 m−2.

The classical, i.e. low-field Hall resistance in two dimensions yields

Rxy =
B

ne
,

which also contains the electron density as the only free parameter and yields the same result.
This is not the case in general, since the Hall effect measures the complete electron density,
while the SdH oscillations stem from only one subband, i.e. one has to be more careful if more
than one wave function perpendicular to the 2DEG is populated, e.g. at high electron densities.

Solution to problem 39

We choose the indices such that Tij ≡ Ti→j denotes the total transmission of electrons from
contact i to contact j. Now we use the Landauer-Büttiker formula for Ni quantum channels in
each contact i:

Ii =
2e2

h

(Ni −Ri)µi −
∑
j

Tjiµj

 (1)

In our example we have only one channel in each contact, i.e. Ni = 1 for all i, and no backscatter-
ing inside the contacts, Ri = 0. The transmission coefficient for contact pairs connected directly
by edge channels (directional!) are one, i.e. T12 = T34 = T45 = T61 = 1, while the transmission
in the opposite direction is zero: T21 = T43 = T54 = T16 = 0. The transmission between pairs
separated by the quantum point contact are given by T23 = T56 = T . The other edge channel
scatters into the opposite lead on the same side of the constriction: T2→6 = T5→3 = 1− T = R
since R + T = 1. The current flows from contact 1 with I1 = I into contact 4 with I4 = −I
while the current in the voltage terminals is zero by definition, i.e. I2 = I3 = I5 = I6 = 0. With



this we can write eqn. (1) as a 6 by 6 matrix:

I
0
0
−I
0
0

 =
2e2

h



1 0 0 0 0 −1
−1 1 0 0 0 0
0 −T 1 0 −R 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 −R 0 0 −T 1





µ1

µ2

µ3

µ4

µ5

µ6

 .

The matrix relating the currents to the contact potentials is called conductance matrix. Its
columns and rows are not linearly independent. We can choose one potential to be zero, e.g.
µ4 ≡ 0, which means that we can drop column 4 from the matrix. In addition, we can drop row
4, because one of the currents is the negative value of the sum of all the others due to current
or charge conservation, i.e. Ii = −

∑
j 6=i Ij . Here we have I1 = −I4. The remaining system of

equations reads 
I
0
0
0
0

 =
2e2

h


1 0 0 0 −1
−1 1 0 0 0
0 −T 1 −R 0
0 0 0 1 0
0 −R 0 −T 1




µ1

µ2

µ3

µ5

µ6

 .

For more complex systems one can invert the resulting matrix (here 5× 5), which yields the
potentials in the contacts as a function of the currents given from the boundary conditions and
the resistances can be calculated. In our simple example, we can solve the system of equations
”by hand”: The first equation (or line of the matrix) reads

I =
2e2

h
(µ1 − µ6)

The second, 0 = −µ1 + µ2, directly yields

µ1 = µ2.

The third requires 0 = −Tµ2 + µ3 − Rµ5, which results in µ3 = Tµ2 + Rµ5. The fourth line
simply gives

µ5 = 0,

which, using the previous equations, leads to

µ3 = Tµ1.

1 4T
2→6
=R

T=T
2→3

R=T
5→3

T
5→6
=T

2 3

56



The fifth equation, 0 = −Rµ2 − Tµ5 + µ6, yields

µ6 = Rµ1.

Inserting these results into the first equation, one obtains

I =
2e2

h
(µ1 −Rµ6) =

2e2

h
µ1(1−R) =

2e2

h
µ1T.

Now we can calculate the required resistances:

R14,23 =
µ2 − µ3

I14
=
µ1 − Tµ1

I
=

h

2e2

1− T
T

and

R14,63 =
µ6 − µ3

I14
=
Rµ1 − Tµ1

I
=

h

2e2

R− T
T

=
h

2e2

1− 2T

T
.

Solution to problem 40

All N electrons in the area L2 have to occupy the lowest Landau level. In turn, this level has
to accommodate all N electrons, so that the level degeneracy, g, has to be larger than N . The
degeneracy of every Landau level is given by the ratio between the magnetic flux through the
system and the flux quantum (intuitively: every Landau state occupies approximately an area
of π`2B = h

2eB with `B = ~
eB the magnetic length, see script p.4.53. An additional factor of 2

enters by the spin degeneracy. The total area contains L2

2π`2B
= L2B

h/e = Φ
Φ0

states.) From this

follows

g =
Φ

Φ0
=
L2B

h/e
=
eB

h
L2.

Requiring that g > N one finds

B >
h

eL2
N.

For a fixed electron number N in a sample (no reservoir couples to the 2DEG), the Fermi
energy is not fixed (see statistical mechanics later for a deeper understanding). If we consider
only the kinetic energy of the electrons (e.g. we neglect the Zeemann energy), we find

E = ~ωc
(
p+

1

2

)
=

~eB
m

(
p+

1

2

)
∝ B

with p ∈ N0. This means that the energy of the states with quantum number p (Landau levels)
raises linear in B with a constant of proportionality that depends on p. This leads to the
”Landau Fan” depicted in the figure.

The Fermi energy EF here is the highest energy of the occupied states (in thermal equilib-
rium). It is easiest to start at high fields with all electrons in the lowest Landau level (p = 0).
When B is lowered, the energy is also lowered, but so is the degeneracy. When the condition
B > h

eL2N is not met anymore, the next level has to be occupied and the Fermi energy jumps

up to the p = 1 level. This happens at B = h
eL2N = nh

e or at filling factor ν = 1 (for spin
degenerate levels). Similar jumps in the Fermi energy occur at the next integer filling factors
at lower fields (or even integer fillings if the spin degeneracy is not resolved anymore). This is
depicted in the figure below for the spin degeneracy fully lifted and for an electron density of
n = 3 × 1015 m−2. N.b.: The figure is plotted to scale and it becomes clear that the jumps do
not end at the same energies.
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