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Solution to problem 41

a) If you read the script, you may proceed to the next problem.

b) • Weakest – van der Waals binding

Relevant for example for neutral noble gas atoms or carbon nanotubes on a surface,
where the interaction between fluctuations in the electron distribution leads to an at-
tractive force (first order: dipole-dipole). The binding energy varies with the distance
like r−6.

• Metallic binding

In a metal, the atoms’ valence electrons are delocalised over the whole crystal and
the interaction with all positive ion cores contributes significantly to the binding.
Further contributions arise from electron-electron and the exchange interaction (Pauli
principle). The binding energies are smaller than for the ionic binding and span a
broad energy range.

• Ionic bonding

In this case it is sufficient to consider the interaction between the opposite electrostatic
ionic charges in a classical picture. Ionic bonds form between many different binding
partners (→ Madelung constant). Binding energies are in the range of 5...10 eV.

• Strongest – Covalent bonding

Due to the overlap of the atom’s orbitals their valence electrons become delocalised
between nearest neighbours when a covalent crystal is formed. This makes covalent
bonds directional and stronger than ionic bonds. Covalent bonds often are partly
ionic.
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Figure 1: Potential for problem 35.c).i)

c) i) The potential is plotted in fig. 1.



ii) There’s an attractive term from the Coulomb interaction and a repulsive term from
the Pauli principle. Setting the derivative of the total energy (equation 5.25 in the
script) with respect to r to zero, one obtains the equilibrium radius:

dE

dr
= 1Ry ·

[
−5.74

a2B
r3
− aB
r2

(
−3 + 5.74

aB
r

)]
!

= 0 (1)

⇒ req =
2 · 5.74 · aB

3
= 2.03 Å (2)

Inserted this radius into 5.25 gives the binding energy EB = −5.33 eV.

iii) In our model req is equal to the lattice constant a – here we use simply req = n−1/3.
Comparing the calculated binding energy to real values of the solids’ cohesion energies
per atom as well as their ionisation energies (e.g. script page 5.29 or table below,
taken from C. Kittel, Introduction to solid state physics, 7th ed., Wiley 1996) shows
that the model is not very accurate. However, it reproduces the ionisation energyfairly
well. The difference between our calculation and the measured values are due to the
fact that we have neglected electron-electron and exchange interactions.

Table 1: Binding energies for several metals calculated from the model. Ecoh is the cohesive
energy of a solid, Eion its ionisation energy.

Material crystal a R EB Ecoh Eion

Fe bcc 2.87 Å 2.28 Å -5.3 eV -4.28 eV 7.9 eV
K bcc 5.22 Å 4.14 Å -3.9 eV -0.93 eV 4.34 eV
Au fcc 4.08 Å 2.57 Å -5.1 eV -3.81 eV 9.22 eV
Cu fcc 3.61 Å 2.27 Å -5.3 eV -3.49 eV 7.72 eV
Zn hcp 2.66 Å 2.11 Å -5.3 eV -1.35 eV 9.39 eV

d) The Madelung constant is characteristic for ionic crystal structures (script page 5.33) and
can be found by adding all Coulomb terms in electrically neutral cells (script page 5.36) –
which is not mathematically required, but leads to better convergence in the calculations.
For the two-dimensional NaCl crystal this is shown in the figure below, where one species,
e.g. the positively charged, is shown as white circles, the other as gray circles. The total
Coulomb energy of a given atom (here shown as red circle) is the sum over all other atoms:

EC =
∑

sign(i, j) e2

4πε0r
with ri,j the distance to the other atom. r can be expressed in

lattice constants, ri,j = di,j ·R and one finds EC = e2

4πε0R
·M with the Madelung constant

M =
∑

sign(i, j)/di,j .

Solution to the problem:

For the first cell, shown in Fig. (a) one finds:

M1 = −4 · 1

2
· 1

1
+ 4 · 1

4
· 1√

2
= −2 +

1√
2
≈ −1.29⇒ α = 1.29

Similarly, we find

M2 = −4 · 1

1
· 1

1
+ 4 · 1

1
· 1√

2
− 8 · 1

2
· 1√

5
+ 4 · 1

2
· 1

2
+ 4 · 1

4
· 1√

8
≈ −1.61

After two steps, you obtain the Madelung constant α = 1.61.



Figure 2: Calculation of the Madelung constant

Solution to problem 42

The solution can be found on the left hand side of figure 1.27 in the script on page 1.29. This
figure also contains a schematic of the first Brillouin zone (BZ) for orientation.
To calculate the band diagram in the free electron model, we assume a parabolic dispersion
relation given by the free electron mass m, and a lattice parameter a = 1 nm. Each band is
obtained by the formula given in the script on page 6.18:

E(k) =
~2

2m
(k +K)2, (3)

where k ∈ 1. BZ. The reciprocal lattice of fcc with the edge length a is bcc with edge length
4π
a . This results in a series of parabolas centered at lattice vectors K ∈ G∗, given by multiples

of the primitive basis vectors, K = m1b1 +m2b2 +m3b3 (mi ∈ Z), for example with the basis
vectors

b1 =
1

2

4π

a

 −1
1
1

 , b2 =
2π

a

 1
−1
1

 b3 =
2π

a

 1
1
−1

 (4)

(Ashcroft and Mermin, page 88, or by construction like in script page 1.27). The figure below
shows a series of such parabolas, restricted to the first BZ in the Γ-X direction, i.e. k = (k, 0, 0)
and k ∈ [−2π/a, 2π/a]. Every curve is n-fold degenerate, i.e. n different K lead to the same

curve with the energy E = ~2
2m(Kx + k)2 + (K2

y +K2
z ). Therefore, K-vectors with the same Kx

and the same K2
y +K2

z lead to the same curve in this direction. Several special cases are plotted
in different colors, e.g. the lowest band for K = 0 (degeneracy 1) in black. The degeneracy of
the red curve is 4, given by ~K ∈ {~b1,−~b2,−~b3,−~b1 − ~b2 − ~b3}. The degeneracies of the cyan
and magenta curves is 4 as well, the one of the green curve is 1. The other curves shown are
eight-fold degenerate.



Solution to problem 43

A short introduction to perturbation theory

This part gives a short introduction to time-independent perturbation theory in order to derive
the terms necessary to solve this problem (see below). This part can be skipped by the more ex-
perienced students. The introduction largely follows the book ”Physics of atoms and molecules”
by B. H. Bransden and C. J. Joachain (Prentice Hall, Harlow/UK, 2nd edition, 2003), chapter
2.8.

Time-independent perturbation theory can be used when a small perturbation induces H ′ is
added to the system described by the Hamiltonian H0 with known eigenstates:

H = H0 + λH ′.

What ”small” means should be critically assessed later. λ is used to turn on the perturba-

tion. The unperturbed system H0 has known eigenvalues E
(0)
k and eigenstates ψ

(0)
k with the

orthonormal relations ∫
ψ
∗(0)
i ψ

(0)
j dx = δij

The goal is to solve the eigenvalue problem of the perturbed system,

Hψk = Ekψk, (5)

with the perturbed eigenvalues Ek. Let ψ
(0)
k be non-degenerate. We require that the weak

perturbation modifies the energy level only to that extent that the perturbed level, Ek, is still

much closer to E
(0)
k than to other E values. Ek and ψk may then be expanded in powers of λ:

ψk =
∞∑
i=0

λiψ
(i)
k , and Ek =

∞∑
i=0

λiE
(i)
k (6)

i is the order of the perturbation. Now the expansions are substituted in the eigenvalue problem
eqn. (5), which yields:

(H0 + λH ′)
(
ψ
(0)
k + λψ

(1)
k + λ2ψ

(0)
k + . . .

)
(
E

(0)
k + λE

(1)
k + λ2E

(2)
k + . . .

)(
ψ
(0)
k + λψ

(1)
k + λ2ψ

(0)
k + . . .

)
Equating equal powers of λ yields

H0ψ
(0)
k = E

(0)
k ψ

(0)
k

H0ψ
(1)
k +H ′ψ

(0)
k = E

(0)
k ψ

(1)
k + E

(1)
k ψ

(0)
k (7)

etc. The first-order energy correction is obtained by premultiplying eqn. (7) with ψ
∗(0)
k and

integrating over space which then yields∫
ψ
∗(0)
k (H0 − E(0)

k )ψ
(1)
k dx+

∫
ψ
∗(0)
k (H ′ − E(1)

k )ψ
(0)
k dx = 0

With the unperturbed eigenvalue problem and the fact that H0 is hermitian, the first term
vanishes. The second term reduces to

E
(1)
k =

∫
ψ
∗(0)
k H ′ψ

(0)
k dx =: H ′kk , (8)



a matrix element which is the expectation value of H ′ with respect to the unperturbed states
of the system, i. e., the first-order energy correction of the perturbed energy levels in the non-
degenerate case. We’re presently not interested in higher orders, so let’s stop here. Higher-order
corrections are obtained in a similar way, i. e. comparing the equal powers of λ.

If the level E
(0)
k is α-fold degenerate, several unperturbed wavefunctions ψ

(0)
kr with r = 1 . . . α

correspond to E
(0)
k . If the functions ψ

(0)
kr are not orthogonal initially, it is possible to construct

an orthogonal set from them – let’s assume without loss of generality that this has already been
done, i.e. ∫

ψ
∗(0)
kr ψ

(0)
ks dx = δrs.

Now we again expand the wavefunctions and energies in equal powers of λ, similar to eqn. (6).
To take the degeneracy into account, we now have to replace the first term of the expansion

with the new zero-order wave functions χ
(0)
kr which are linear combinations of the α unperturbed

wave functions1 ψ
(0)
kr :

χ
(0)
kr :=

α∑
s=1

crsψ
(0)
ks , r = 1 . . . α.

The determination of the coefficients crs ultimately2 leads – for each r – to the equation

det

∣∣∣∣∣
∫
ψ
∗(0)
ku H ′ψ

(0)
ks dx︸ ︷︷ ︸

=:H′
us

−E(1)
kr δus

∣∣∣∣∣ = 0, s, u = 1, . . . α (9)

with the integral matrix element H ′us. This equation3 (that is, the determinant of the matrix)

has α roots, E
(1)
k1 , E

(1)
k2 , . . . , E

(1)
kα , which denote the first-order energy correction of the perturbed

energy levels in the degenerate case. If they are distinct, the degeneracy is said to be removed
to first order in the perturbation. Otherwise it is partially or not removed to first order, but
higher orders of perturbation theory may still lift the degeneracy.

Solution to the problem

Important: note that the focus of this problem is not on the calculations, but rather on the
results: energy gaps open in the dispersion relation of free electrons subject to a weak periodic
potential.

a) The system is very large and has a length of L. The unperturbed eigenfunctions ψ±k(x) =
Ce±ikx where C = L−1/2 have the same energy for those k values satisfying

kn =
nπ

a
, n ∈ Z,

which are the Brillouin zone boundaries. These solutions are degenerate, since the differing
wavefunctions ψk and ψ−k have the same energy Ek = E−k at these boundaries, as seen in
fig. 3. This accounts for a two-fold degeneracy and we have to find the roots of the 2× 2
determinant given by eqn. (9).

1In the problem below, we’re dealing with α = 2-fold degenerate wavefunctions which also already fulfill the
orthogonality requirement

2Equating equal powers of λ and integrating over space have been skipped here
3. . . is the eigenvalue problem of the α × α perturbation matrix in the degenerate case. In eqn. (8), the

non-degenerate matrix elements were derived – note that in this case the off-diagonal matrix elements vanish.
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Figure 3: Parabola E(k) for free electrons with the Brillouin zone boundaries nπ/a as requested in
problem a). The red dots derived in d) denote the corrections from the first order of perturbation
theory and show the size of the gap. For clearness’ sake, the middle parabolae were not fully drawn.
Vn is the nth Fourier component of the potential (see below); e. g. for k = 2π/a, the splitting
would be 2 |V2|.

b) The periodic potential V (x) can be written as a Fourier series using the above expression
for kn:

V (x) =
∞∑
−∞

Vne
iknx

with the properties V (x) = V (−x) and Vn = V−n. The diagonal matrix elements H ′11 and
H ′22 of the perturbation matrix are

H ′11 =

L∫
0

ψ∗±kV (x)ψ±kdx =: V±k,±k

The off-diagonal matrix elements are

V±k,∓k =

L∫
0

ψ∗±k V (x)ψ∓kdx

We have to find the roots Ek1,2 of∣∣∣∣∣Vk,k − E
(1)
k1,2 Vk,−k

V−k,k V−k,−k − E
(1)
k1,2

∣∣∣∣∣ = 0. (10)

The unperturbed wave functions ψ
(0)
±k are of the form of plane waves.

c) For the case k 6= nπ/a, the off-diagonal matrix elements are identical to 0, i. e. Vk,−k ≡ 0.



Calculation of V±k,±k:

Vk,k =
1

L

L/2∫
−L/2

e−ikx ·

( ∞∑
n=−∞

Vn · eiknx
)
eikxdx

=
∑
n

Vn
L

L/2∫
−L/2

eiknxdx =
∑
n

Vn
sin(knL/2)

knL/2
. (11)

For a very large system, we may use

lim
L→∞

sin(knL/2)

knL/2
= δ(kn),

hence
Vk,k =

∑
n

Vnδ(kn) = V0,

since this sum only contributes for n = 0. V−k,−k yields the same offset V0. The off-
diagonal elements of the perturbation matrix vanish and the unperturbed wavefunctions
are already good basis functions, so that eqn. (8) may be used for the calculations. The
energy values off the full, perturbed system are:

Ek = E
(0)
k + V0 =

~2

2m
k2 + V0,

since E
(0)
k is the energy of the free electron.

d) For k = nπ/a, the periodic potential yields additional contributions and the full pertur-
bation matrix eqn. (10) comes into play. We see this when we calculate V±k,∓k:

Vk,−k =
1

L

L/2∫
−L/2

e−ikx ·

( ∞∑
n=−∞

Vn · eiknx
)
e−ikxdx

=
∑
n

Vn
L

L/2∫
−L/2

ei(kn−2k)dx
limL→∞=

∑
n

Vnδ(kn − 2k). (12)

For a very large system, we may use

lim
L→∞

1

L

L∫
0

ei(kn−2k)dx = δ(kn − 2k).

Since we only look at k = nπ/a, the integral remains finite and Vk,−k evaluates to delta
spikes (i. e., at the dashed gray lines in fig. 3). At these points (and only there), the
potential gives the additional contribution mentioned above:

Vk,−k =
∑
n

Vnδ(kn − 2k) = Vn.

The matrix element V−k,k evaluates to the same result. The perturbation matrix for the
kn points now looks like this: ∣∣∣∣∣V0 − E

(1)
k1,2 Vn

Vn V0 − E(1)
k1,2

∣∣∣∣∣ = 0.



The eigenvalues of this matrix denote the energetic first-order perturbation term, E
(1)
k1,2 =

Ek − E
(0)
k and the equation is

(V0 − E(1)
k1,2)

2 − V 2
n = 0

Its solutions E
(1)
k1,2 = V0 ± Vn yield the perturbed energy values

Ek =
~2

2m
k2 + V0 ± Vn

This result means that at these points in k space the degeneracy is lifted because the
free electron parabolas are split at the zone boundaries (red dots in fig. 3). This energy
splitting (or, gap) has a magnitude of 2Vn. In other words, a weak periodic potential
acting on free electrons generally introduces an energy gap which is caused by lifting the
degeneracy of the wave functions at the Brillouin zone boundaries.

e) We remain at the kn points. The perturbed wavefunctions are linear combinations of the
unperturbed ones, i. e.

ψ
(1)
k = c1ψ

(0)
k + c2ψ

(0)
−k =

1√
L

(
c1e

ikx + c2e
−ikx

)
The coefficients must satisfy the equations

c1(V0 − E(1)
k1,2) + c2Vn = 0

c1Vn + c2(V0 − E(1)
k1,2) = 0.

With E
(1)
k1,2 = V0 ± Vn, this yields

Vn(∓c1 + c2) = 0

Vn(c1 ∓ c2) = 0

The solutions are

c1 = c2 for E
(1)
k1,2 = V0 + Vn

c1 = −c2 for E
(1)
k1,2 = V0 − Vn

Hence, the new wavefunctions at the points k = kn can be written as

ψ±kn =
1√
L

(
eiknx ± e−iknx

)
This superposition yields standing waves of cosine and sine type and arise from the elec-
trons being Bragg reflected. These waves, in turn, describe the probability density of the
electrons’ positions: For the lower energy values, the probability to find the electrons near
the core, is high. For the high energy values, finding the electrons near the core, is low,
but finding the between the cores is high (see e. g. C. Kittel, ”Introduction to Solid State
Physics”, chapter ”Energy bands”). Consequently, these different groups of electrons see
different potentials: The electrons near the core feel the attractive Coulomb interaction.
Electrons away from the core have higher energy and to be able to reach these states, they
have to overcome the Coulomb forces. n also denotes the scattering order.



Solution to problem 44

a) Solution by directly inserting R into the equation for Ψ(r) on the problem sheet:

Ψ(r +R) =
∑
j

eikRjψ([r +

=:−Rp︷ ︸︸ ︷
R]−Rj) =

∑
j

eik(Rp+R)ψ(r −Rp)

= eikR
∑
j

eikRpψ(r −Rp) = eikR
∑
p

eikRpψ(r −Rp)

= eikRΨ(r)

In the last step, equation (1) of the problem sheet is used again, and in the step before we
use the fact that a summation over all lattice sites is independent of the sequence of the
summation, i.e. adding R to all arguments does not change the sum and we can change
the summation index to p.

b) The 1s wave function has a radial part of the form ∝ e(r−ra)/r0 with the atom positions
ra, spaced by the lattice constant a, and the characteristic radius r0, e.g. the Bohr radius.
For k = 0 the phase factor is 1 and Ψ is simply the sum of the atomic wave functions
displaced by a lattice vector. The result is shown in figure 1a).

For k = π
3a , the wave function is multiplied by a phase factor, which leads to the envelope

function shown in figure 1b), multiplied with the wave function found in a).

Comment: Sometimes, the wavefunction is multiplied with the electron position r4. The
absolute square of this new function is the probability of finding the electron at a distance r
from the atom. Consequently, each of the blue 1s functions in the figure drops to 0 at the atomic
positions Rj .

MATLAB tutorial: the following code was used to plot the curves in figure 1b) (note: the
units are arbitrary):
x=0:3000; y=zeros(1,length(x));

for p=0:20

y=y+exp(-abs(x-p*300)/10).*exp(i*p*pi/3);

end;

plot(x,real(y)); hold on; plot(x,real(exp(i*x/300*pi/3))); axis off

4See e. g. the poorly labeled graph in fig. 10.7, p. 185 in the book ”Solid state physics” by Ashcroft and
Mermin, 1976


