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Problem 45

The transverse mass m?
t and longitudinal mass m?

l describe an anisotropic dispersion relation

E(~k) = ~2/2
[
(k2x + k2y)/m?

t + k2z/m
?
l

]
, e.g. in Silicon. Use the semi-classical equation of motion

d(~~k)/dt = −e~v × ~B and show that the cyclotron frequency for a static magnetic field in the
(x, y)-plane has the form ωc = eB/

√
m?

tm
?
l . Note that these effective masses do not enter

different measured properties in the same way.

* Problem 46 (1 point)

The crystal structure of GaAs under standard conditions is the Zinkblende structure, see script p.
1.25 (Fig. 1.26). Using a periodic table of the elements to find the atomic electron configuration,
try to predict if GaAs is a metal or an insulator. Discuss in few words how good this prediction
is and whether this is observed in nature.

* Problem 47 (5 points)

We use the zero-order crystal wave function Ψ of exercise 38 to estimate the ~k-dependence of
the crystal’s energy. For this we want to find the eigen energy ε(~k) in the Schrödinger equation

Hcryst|Ψ〉 = ε|Ψ〉 (1)

Multiplication from the left with 〈ψ| (the atomic orbital), using the linear combination of atomic
orbitals and some tedious, but simple explicit writing-down-equations leads to a series of integrals
similar to overlap-, Coulomb- and exchange integrals in atomic physics. The tight binding
method is mainly of use if the overlap of the wave functions of nearest neighbors is small, and
one finds

ε(~R) = εn︸︷︷︸
indep. of ~k

+
∑
~R 6=0

γ(~R)ei
~k ~R

︸ ︷︷ ︸
~k-dependent

(2)

a) What is ~R and what determines the width of the band, i.e. the amplitude of the ~k-dependent
part?
b) In a two-dimensional quadratic lattice with spacing a we assume γ1 =const. for the wave
function at one atom with the nearest neighbors and another constant γ2 for the next-nearest
neighbors. All other γ’s we set to zero. The wave function overlaps we assume to be weak. Write
down the corresponding tight binding energy as a function of kx and ky. Draw this dispersion
relation for the two directions in k-space [1, 0] and [1, 1].

Problem 48

In this exercise we study Bloch oscillations in one dimension, see script p. 6.59. We assume
a dispersion relation of the form E(k) = 1/2ε[1 − cos(ka)], with the width of the band ε, e.g.



figure 6.31 in the manuscript. We consider an electron starting with k = 0, i.e. at the bottom
of the band. In a semi-classical picture the electron momentum changes due to an externally
applied electric field F by ~k̇ = −eF . Integration yields

k(t) = −eF t/~ (3)

This means that without scattering the electron k-vector increases indefinitely. When it reaches
the Brillouin zone, it is folded back to the other side of the zone. Inserting into the expression
for the electron group velocity yields

v =
1

~
dE

dk
=
aε

2~
sin(ka) = − aε

2~
sin(eFat/~), (4)

which is periodic in time. Integration leads to the position

s =
ε

2eF
cos(eFat/~) (5)

1. Draw a series of qualitative dispersion relations with the electron position in (k,E) for
several interesting times t.

2. Typical bands have a width of the order of ε ≈ 1 eV (see for example script p. 6.41), the
largest electrical fields in modern nanostructures are roughly F ≈ 1 V/nm and we may
take a ≈ 1 Å. What are the oscillation frequency and the oscillation amplitude of such a
Bloch oscillation?

3. Compare the numbers in a) to the typical Drude scattering time and mean free path in a
metal. Draw a schematic of what happens in an inelastic scattering event in the dispersion
relation.

Comment: A ‘hot’ topic in modern semiconductor nanophysics are artificially grown crystals
with a periodic structure in one direction (‘superlattices’). These can have larger mean free
paths and a period given by the experimentalist. In such structures a large variety of effects can
be studied, among them Bloch oscillations, see for example T.M. Fromhold et al., Nature 428,
726 (2004).


