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Discussion: 10. Dec. 2013

Problem 45

All directions in the (x, y)-plane are equivalent, so we can choose ~B = (B, 0, 0). Using ~v = 1
~
~∇~kE(~k)

for the group velocity leads to the component j of the velocity, vj = ~kj/mj , which allows us to write
the semi-classical equation of motion as a set of three coupled differential equations:
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The first equation simply states that the momentum does not change with time, i.e. it is constant.
Inserting the Ansatz kj = kj,0e

−iωct into the equations (2) and (3) leads to the algebraic equation
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This system of equations has a solution if the determinant of the matrix to the left is zero, which leads
to the quadratic equation −ω2

c + e2B2

mtml
= 0 and to the result required on the problem sheet.

* Problem 46

The metal Gallium has the configuration [Ar] 3d10 4s2 4p1 and Arsenic [Ar] 3d10 4s2 4p3. Only the p-
orbitals contribute significantly to the delocalized states, so we obtain one electron from each Ga atom
and three from the As atoms. Gallium and arsenic form the III-V compound semiconductor GaAs
which crystallizes in the zincblende structure, which contains 4 Ga atoms and 4 As atoms in the unit
cell (p. 1.25, Fig. 1.26). From this we would conclude that an even number of electrons per unit cell
have to be filled into the bands. This suggests that GaAs is an insulator (see script p. 6.39). Though
this picture does not account for band overlaps, electron-electron interactions, and other effects, we
find in nature that GaAs has indeed a band-gap. GaAs is an important semiconductor in industry
and in research laboratories.

* Problem 47

a) The width of the band is determined by γ, usually by the one due to the nearest neighbors. In the
example considered in part b), the width is ∼ 2γ1.

b) Since the γ’s usually lead to a reduction of the energy (binding), we use a positive number and a
negative sign for emphasis. Each term in equation (3) of the problem sheet has a phase of the form
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, where Rx and Ry are the x and y components of the lattice vector ~R pointing

to the neighboring atoms. For example, for the nearest atom to the right (number 1 in figure 2a),
Rx = a and Ry = 0. The tight binding energy then reads (see figure for geometry):



ε = ε0 −γ1(

atom 1︷︸︸︷
eikxa +

atom 3︷︸︸︷
eikya +

atom 5︷ ︸︸ ︷
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ei(kx+ky)a +
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ei(−kx+ky)a +

atom 6︷ ︸︸ ︷
ei(−kx−ky)a +

atom 8︷ ︸︸ ︷
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= ε0 −2γ1[cos(kxa) + cos(kya)]− 2γ2[cos([kx + ky]a) + cos([kx − ky]a)]

In the last step the terms labeled ‘atom 1’ and ‘atom 5’, 3 and 7, 2 and 6, and 4 and 8 are combined
to the respective cosine terms on the last line.

In the [1, 0] direction, i.e. kx ≡ k and ky = 0, one finds ε = ε0 − 2γ1[1 + cos(ka)] − 4γ2 cos(ka).
In this case, k runs from −π/a to π/a. In the [1, 1] direction, i.e. kx = ky = 1√

2
k one finds ε =

ε0− 4γ1 cos( 1√
2
ka)− 2γ2[1 + cos(

√
2ka)], and k ∈ [−

√
2π
a ,

√
2π
a ] (the Brillouin zone boundary is reached

in its diagonal). The corresponding curves are plotted in figure 2b), with arbitrary energy units and
γ1 = 10γ2.

MATLAB tutorial: the following code was used to plot the red curve in figure 2b):
a=1; gamma1=1; gamma2=0.1;

k=-pi/a:0.01:pi*sqrt(2)/a;

ind=find(k>=0);

E(ind)=-4*gamma1*cos(k(ind)*a/sqrt(2))-2*gamma2*(1+cos(sqrt(2)*k(ind)*a));

ind=find(k<0);

E(ind)=-2*gamma1*(1+cos(k(ind)*a))-4*gamma2*cos(k(ind)*a);

plot(k,E)

Problem 48

a) The time scale on which the electron is moving through k-space is given in equation (1) of the
problem sheet. Starting at k = 0, the k-vector reaches the Brillouin zone boundary at π/a after
∆t = π~/(aeF ).
b) The oscillation frequency is given by ω = eFa

~ and ν = ω/2π. The amplitude is A = ε
2eF . Plugging-

in the numbers yields ν = 24 THz and A = 0.5 nm. However, how does one apply an electrical field
to a metal (and not to the leads) without large currents and heating? A better experiment is to use
a semiconductor with highly conducting contacts. For example, the electrical breakdown in Si occurs
at F ≈ 30 MV/m, which yields ν = 0.73 THz and A = 17 nm.
c) The Drude scattering time in silver (largest scattering time in metals) at 273 K is 4 × 10−14 s
(Ashcroft and Mermin. p.10), which would roughly correspond to the above Bloch oscillation time
ν−1. A scattering event changes the k-vector randomly and in average over many scattering events
to k = 0. Therefore, Bloch oscillations do not occur when the scattering times are smaller than the
Bloch oscillation time, which is the case for most materials.


