Rekapitulation Maxwellgleichungen

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Lorenz-Kraft:
$$\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

+ Newtonsches Gesetz + Gravitation

⇒ Gesamte klassische Physik

Rekapitulation Maxwellgleichungen

in der Materie

$$abla \cdot \vec{D} =
ho_{\mathrm{frei}}$$

$$abla \cdot \vec{B} = 0$$

$$abla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$abla \times \vec{H} = \vec{j}_{\mathrm{frei}} + \frac{\partial \vec{D}}{\partial t}$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$$

Ch. 5 Wechselstrom & elektrotechnische Anwendungen

- Wechselstrom, komplexe Darstellung
- Einfache Schaltelemente
- Leistung des Wechselstromes
- Beispiele:
 - R-C Schaltkreise und Filter
 - Gleichrichter
- Transformator
- Uberlandleitung und Hausleitungsnetz

• Drehstrommotor, Tesla-trafo

Ch 5: Wechselstrom Physik II, pm

Komplexe Zahlen

2 = A. e ! y = A. car p f i. A sin p

(Amplifude) Betrag A

Phase
$$\varphi = \varphi(t) = w \cdot t + \varphi_0$$

Deli

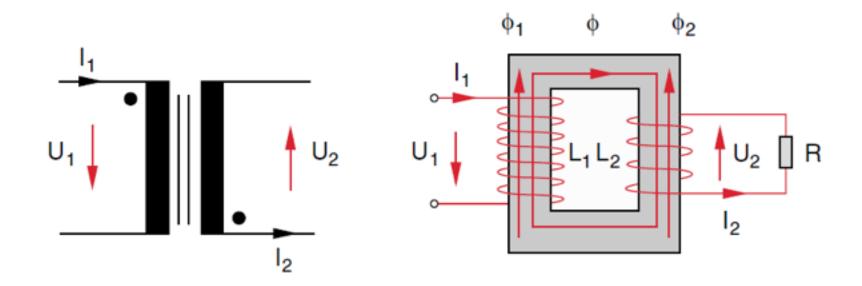
$$\hat{U} := U_0 \cdot e^{i\omega t} = U_0 \cdot eos(\omega t) \in U_0 \cdot i \cdot H_0(\omega t)$$
 $\gamma = 0$

Zergerdulegram

Frequent ash injushed
$$\hat{z}_R = R$$
, $\hat{z}_L = 1\omega L$

$$\hat{z}_C = \frac{1}{1\omega C}$$

$$\frac{1}{2}1 \text{ A} \qquad \omega L$$


$$\frac{1}{2}\omega C$$

$$\omega \rightarrow 0 \quad \hat{z}_L \rightarrow \infty \quad \omega \rightarrow \infty \quad \hat{z}_L \rightarrow 0$$

$$\hat{z}_L \rightarrow 0 \quad \omega \rightarrow \infty \quad \hat{z}_L \rightarrow 0$$

Ch 5: Wechselstrom Physik II, pm

Transformator

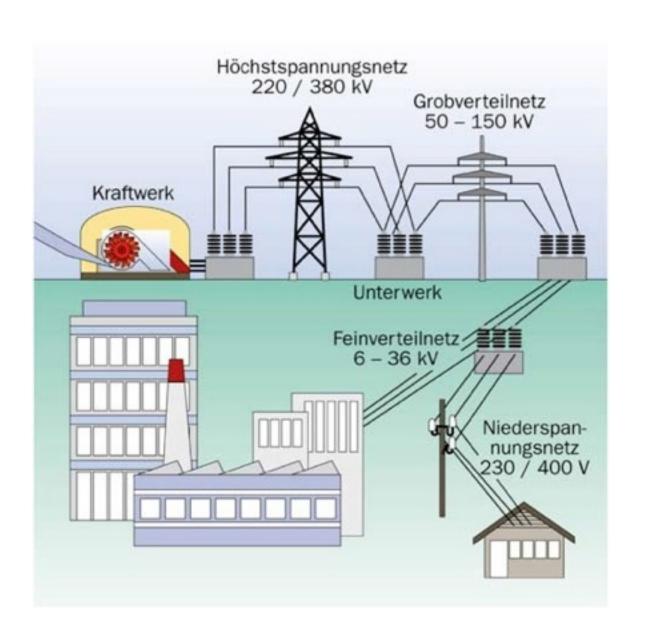
Spannung und Strom am Ausgang (Betrag)

$$\frac{U_2}{U_1} = \frac{N_2}{N_1} \qquad \frac{I_2}{I_1} = \frac{N_1}{N_2}$$

Ch 5: Wechselstrom Physik II, pm

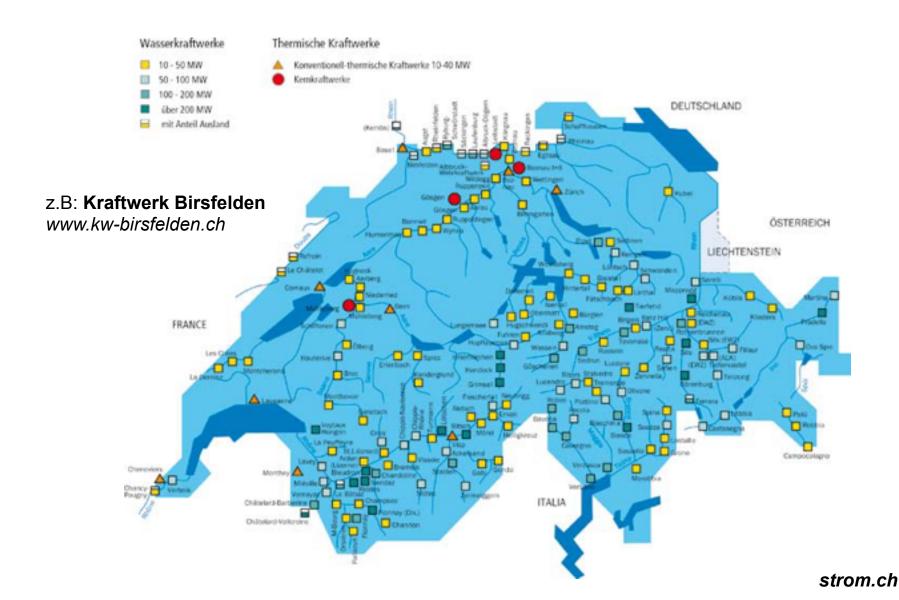
Belasteter Transformator

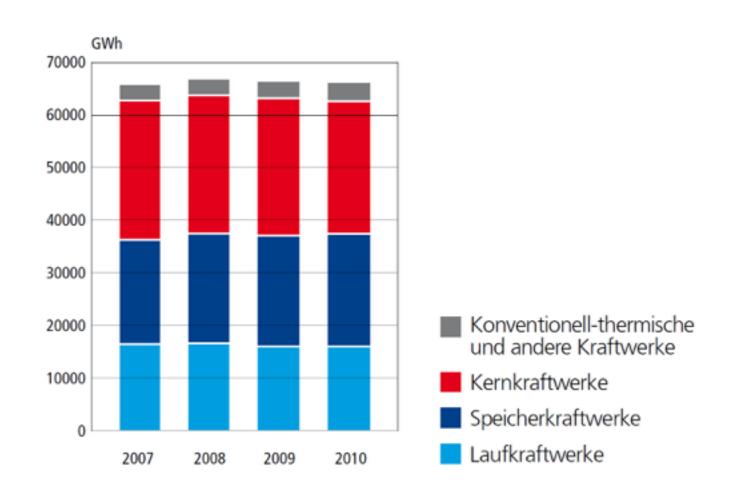
:) Hit Last Ze ("coale Simalion")
Ĩ. Î.
$\widetilde{U}_{1} = \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{1} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde{U}_{1} = 2 \cdot \widetilde{I}_{2} \right] $ $= \frac{1}{2} \left[\widetilde$
$ \hat{I}_{1} = I_{1} \cdot u \cdot \hat{I}_{1} - M_{in} \cdot \hat{I}_{1} = \exists_{L} \hat{I}_{2} $
$(2) \rightarrow \frac{\widehat{\Gamma}_2}{\widehat{\Gamma}_3} = \frac{-iuH}{-iuL_2 + 2c}$
(2) <u>\(\hat{U}_{a} = \frac{32 \tau}{12} \frac{1}{4} \tau \(\hat{I}_{a} = \frac{1}{4} \tau \(\hat{I}_{a} =</u>
= -\frac{-\gamma_1 \text{Tr} \frac{1}{2} \te
1 = 1 = - L.) Land on Lat on 1 = 4-1?
Eurje-shalting: $\widetilde{U}_{1} \widehat{L}_{2} = \widetilde{U}_{1} \widehat{L}_{3} = \widetilde{U}_{1} \widehat{L}_{4} = -\frac{U_{1}}{V_{1}} = -\frac{U_{1}}{V_{2}} = -\frac{U_{1}}{V_{2}} = -\frac{U_{1}}{V_{2}} = \frac{W_{1}}{V_{2}}^{2} = \frac{W_{1}}{V_{2}^{2}}^{2} = \frac{W_{1}}{V_{2}}^{2} = \frac{W_{1}}{V_{2$
$\underline{\underline{r}}$

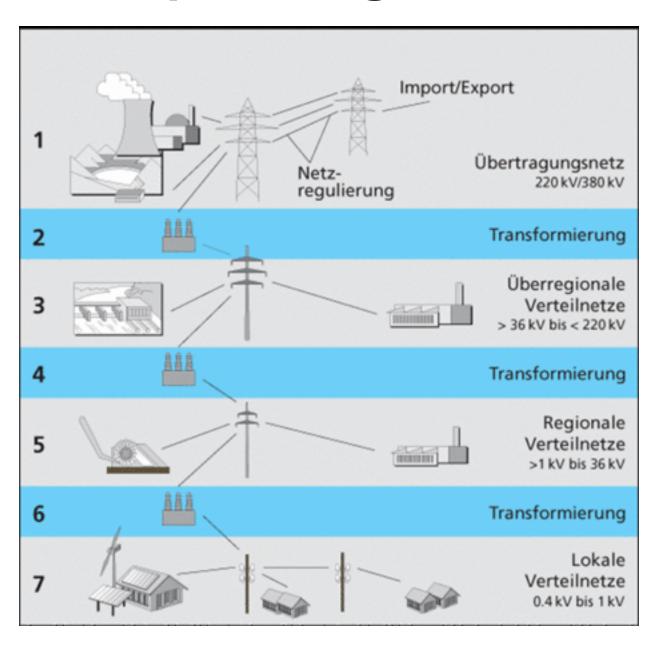

Ch 5: Wechselstrom

Impedanz Anpassung

						IIII	Juai	,I <i>C</i> _ / \	пра	33 4	ΙŊ					1 1
Reale	e Q	مدالع	با ،	arm	Ach	eihe	inlen	, "E	izm-	imped	lam".					
Q:V	Addres	y,	d.	apliu	سلو	Eizu	م- السه-	daus	5,	uu	elu	Lait	unl	luned	am	રેર
Zu	treil	sen ?	,													
	<u>[]</u> a,		7	١.	7	2; - R	; 1 h (1	يا له	- %	ζ;)	; :	}=	Z,1°	۲,		
	٦ (۵)	cos(ut)]	٤	· et	. S	tran d	lwd	systee	м ·	Let	= U/4	44.			
					· In	$\exists_{\mathbf{z}}$	dissi	ikh	Leish	ung i				$z = \frac{u}{1}$		
	_	_										= []	+ ר(ית	<u> </u>	다)-김	(d,+d,)]²
) ا د-	el W	44im —	al 143	em	€ =	ر ا								œ)	
	Dav	m ; '	Pel=	(n,	+ 8 ²)2		anz	= W_N	(TC 1-4	ր _տ) ∸21 Դ, Ո	₩5)4 ₩5/4	14 L5 ²)	≟0)		
						—o 1	R ² →27	1/2+1	3-30	11/2-5	. U.? =	7, R	40	⊸ ?	<u>-8</u> 2	
	~ \v	. ,		-1.		1		. 3.	.11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J. c .	,	i -	12 -	27	
	שן יי-	(x) und	,	184 lm	ysum	and o	2 VO	u X	щч -	ru V	mai	uw	fw	54-	۲۶]	

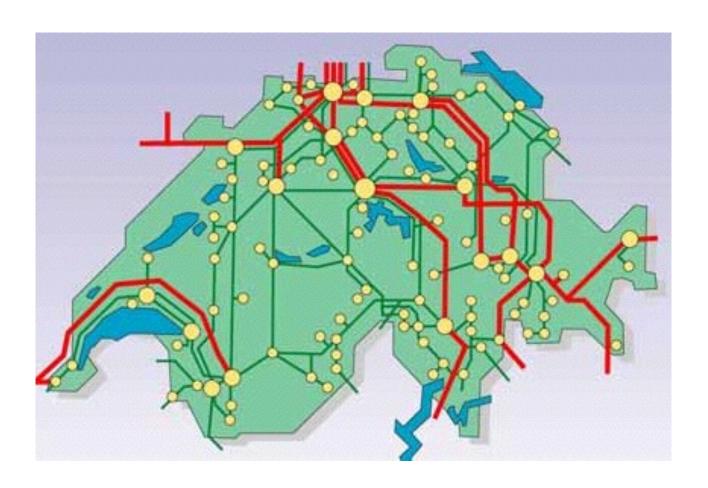

Ch 5: Wechselstrom


Schweizer Kraftwerke


Mit Leistung > 10 Megawatt (MW)

Schweizer Stromproduktion

nach Kraftwerkstypen (2007-2010)

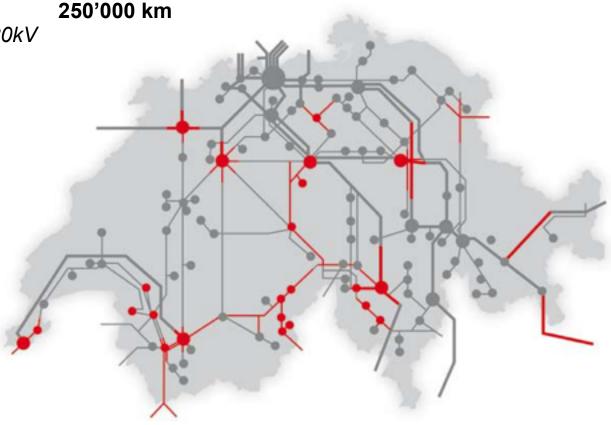


Höchstspannungsnetz

7000 km

International: 220kV / 380kV

Höchstspannungsnetz


7000 km

International: 220kV / 380kV

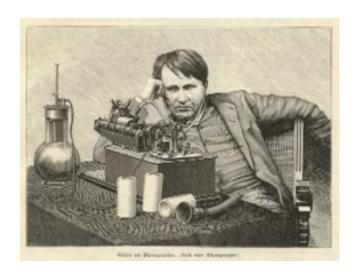
Verteilnetze

Überregional: 36kV – 220kV

Regional: 1kV – 36kV Lokal: 0.4kV – 1kV

Rot: Netzengpässe

Transformator



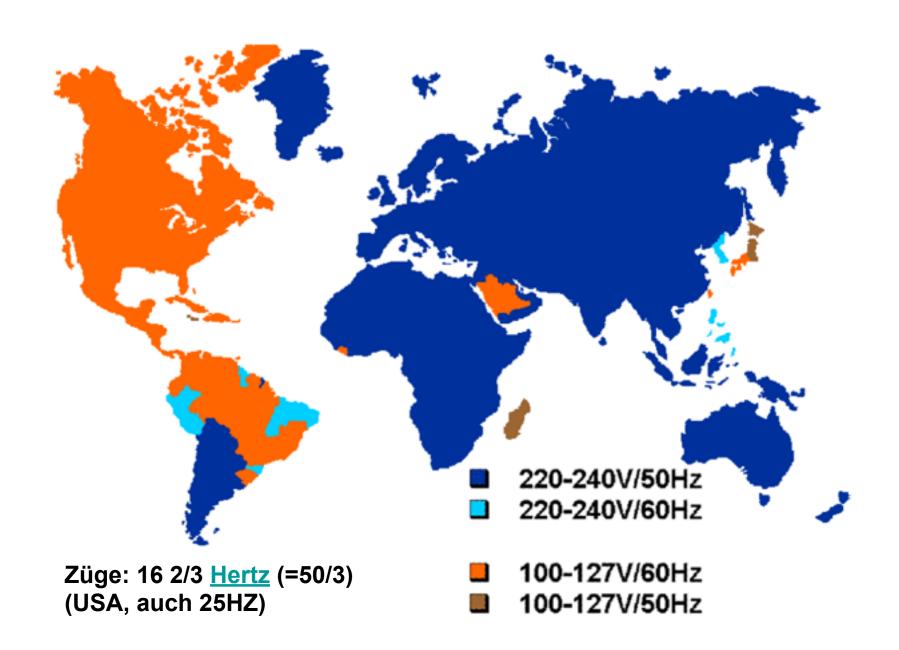
Transformator

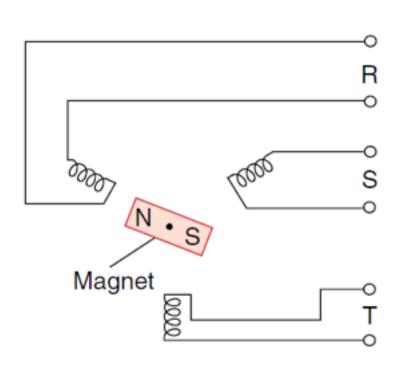
AC vs. DC - "The war of currents"

Thomas Edison, "DC"

- lange Zeit standard in USA
- Kompatibilität mit Glühlampen und Motoren (keine AC Motoren zu dieser Zeit!)
- Verbraucher erhält Spannung die er braucht

George Westinghouse and Nikola Tesla, "AC"



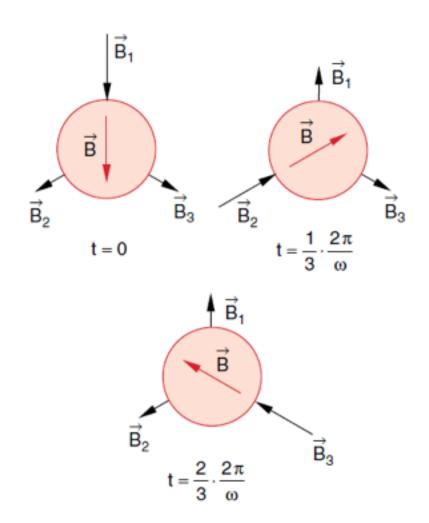
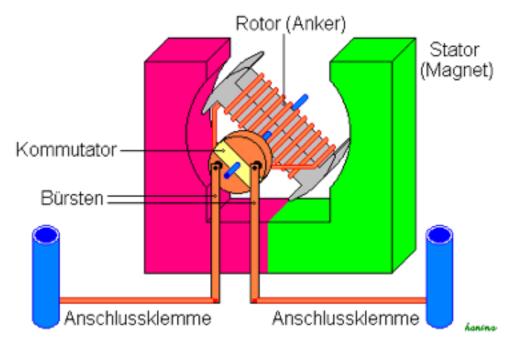
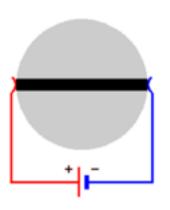

- Einfache Stannungs-Transformation
- Verlustarme Energieübertragung

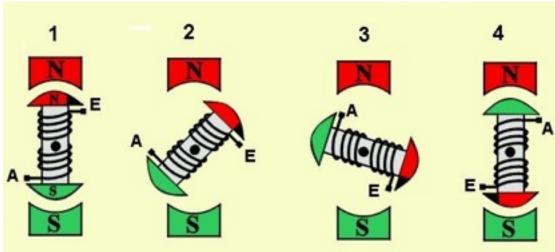
Distanz Kraftwerk<->Verbraucher <2km

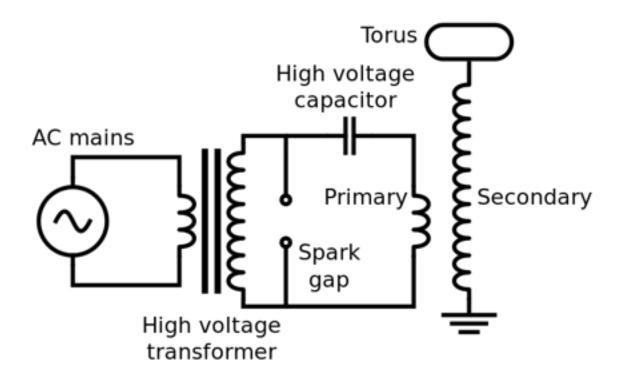
Quelle: wikipedia

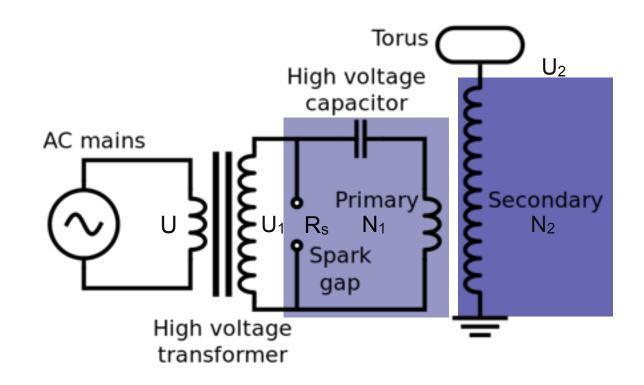
Dreiphasenstrom - Drehstrom

Abb. 5.19. Demonstration des magnetischen Drehfeldes des Drehstroms


Abb. 5.20. Vektoraddition der Magnetfelder in den drei Spulen des Magnetfeldes


Elektromotor



Kommutator: Polwender

- 1. Netzspannung U (50Hz) transformiert zu U₁ (~10keV)
- 2. Kondensator lädt sich auf (in t~1/50Hz=20ms)
- 3. Sobald U₁ gross genug: Durchschlag auf "Spark gap" -> R₅=0
- 4. Primäroszillator schwingt gedämpft $(\omega_1=1/(L_1C_1)^{1/2}\sim 100 \text{kHz})$
- 5. Induzierte Spannung in Sekundäroszillator $(\omega_2=1/(L_2C_2)^{1/2}\sim\omega_1)$: $U_2=U_1*N_2/N_1\sim 100-1000kV$
- 6. Sobald Schwingung ausgeklungen: Funken erlischt. Neustart bei 1.

"Transienter" Spannungspuls gemessen an Spitze des Tesla-Trafos

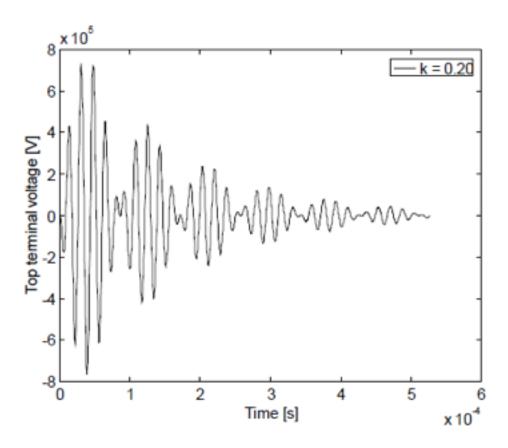


Figure 7: Top terminal voltage for a single spark gap pulse.

"Transienter" Spannungspuls gemessen an Spitze des Tesla-Trafos

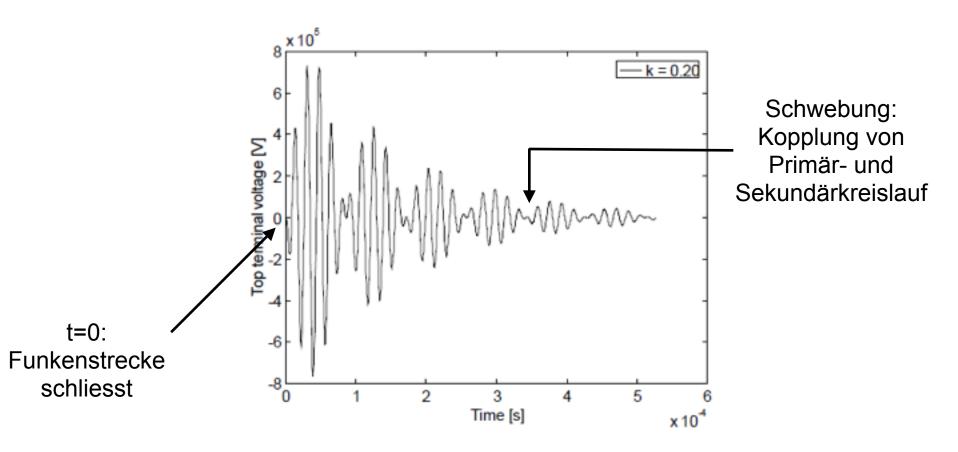
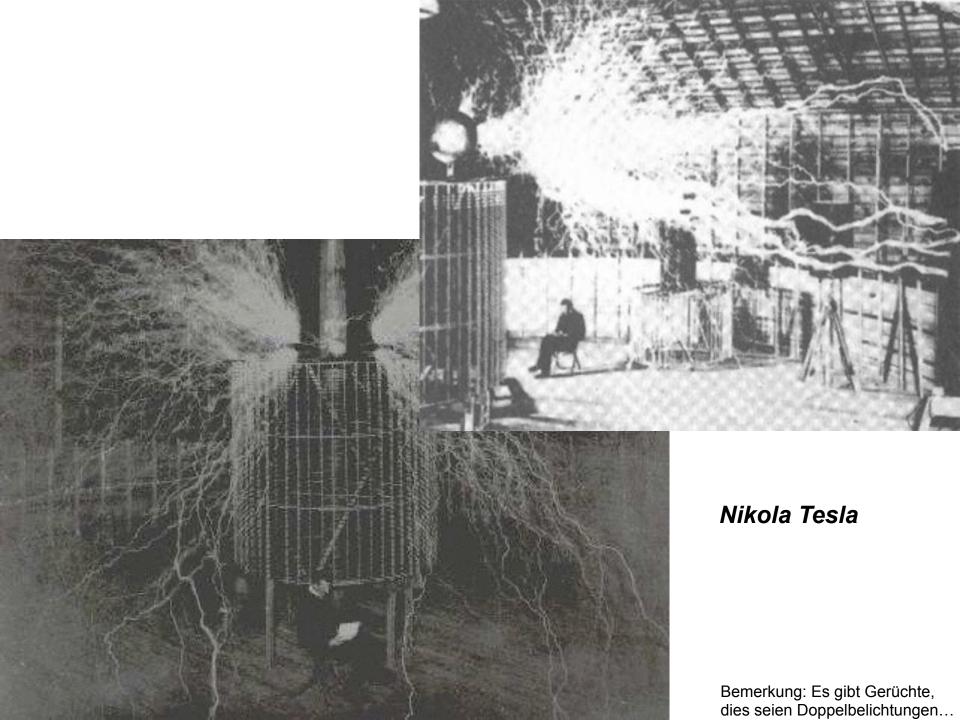
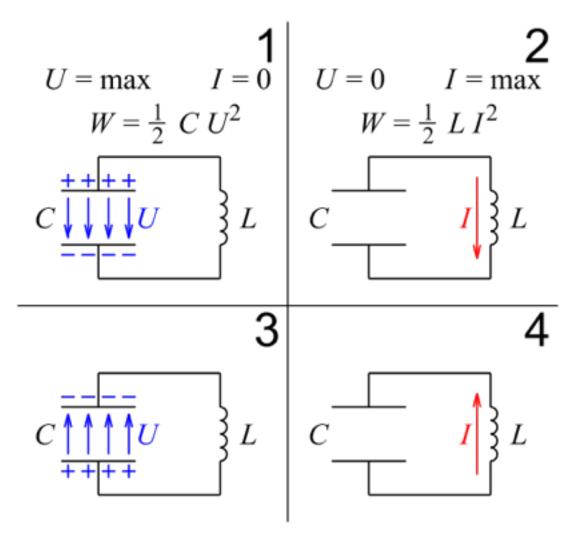



Figure 7: Top terminal voltage for a single spark gap pulse.

RLC Schwingkreis

$$\hat{U}_{L} = \underbrace{2}_{L}.\hat{I}, \quad \text{wit} \quad \hat{Q} = \omega_{o}. \frac{L}{R}$$


$$\hat{U}_{L}(\omega = \omega_{o}) = i. \hat{U}. \hat{Q}$$

$$\hat{U}_{c}(\omega = \omega_{o}) = -i. \hat{U}. \hat{Q}$$

Ch 5: Wechselstrom Physik II, pm

$$\frac{\ddot{q} + R \dot{q} + q}{Lc} = U_0 \cdot cor(\omega t)$$

LC Schwingkreis

