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6. Harmonic Oscillator

This is a part that belongs to the chapter on harmonic oscillators. Due to time limits, I cannot
discuss coherent states in the lectures. For those who are interested I have written this part. Please
read it.

by Christian Schönenberger, Nov. 19, 2014

6.1 Coherent States

For so called Fock-states, also called number-states (i.e. the eigenfunctions of the energy operator),
the uncertainty product of position and momentum ∆x · ∆p = (n + 1/2)~. It is minimal in the
ground state n = 0. We have also seen that the expectation values for position and momentum of all
theses states are zero. Hence, these states display no movement in the sense of what we would expect
to see in the classical motion of e.g. a pendulum. The oscillation of a pendulum is, if there is no
friction, a state of constant energy. So there is seemingly a conflict between the quantum description
and the classical description. However, one can show that quantum mechanics can describe the
periodic motion surprisingly well, in fact with a wavepacket with minimal uncertainty. These states
are superpositions of Fock-states and are known as coherent states. The expectation value for e.g.
position of a coherent state is indeed a periodic motion. Even more so, the uncertainty in position
and momentum of a coherent state is minimal, i.e. ∆x ·∆p = ~/2.

Coherent states are eigenstates of the operator â−. Let us call these eigenstates ψα. The eigenvalue
shall be cα:

â−ψα = cαψα (1)

We will denote the Fock-states by φn:

Ĥφn = Enφn = ~ω
(
n+

1

2

)
φn (2)

We also would like to recall the following set of equations for the raising and lowering operators â+,
â−:

x̂ =
x0√

2
(â+ + â−)

p̂ =
i~√
2x0

(â+ − â−)

Ĥ = ~ω
(
â−â+ −

1

2

)
Ĥ = ~ω

(
â+â− +

1

2

)
1 = [â−, â+]

(3)

The first exercise is to calculate the expectation values for position, momentum and its squares, i.e.
〈x̂〉, 〈p̂〉, 〈x̂2〉, 〈p̂2〉 is the system is in one of the states ψα:

〈x̂〉 =
x0√

2
〈â+ + â−〉 =

x0√
2

[(ψα, â+ψα) + (ψα, â−ψα)]

=
x0√

2
[(â−ψα, ψα) + (ψα, â−ψα)] =

x0√
2

(c?α + cα) =
x0√

2
2Re(cα)

(4)

〈p̂〉 = i
~√
2x0
〈â+ − â−〉 = i

~√
2x0

[(ψα, â+ψα)− (ψα, â−ψα)]

= i
~√
2x0

[(â−ψα, ψα)− (ψα, â−ψα)] = i
~√
2x0

(c?α − cα) =
~√
2x0

2Im(cα)

(5)
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In the above equations we have also make use of the fact that the hermite conjugate operator of â−
is â+ and vice versa. Using the same procedure we can compute 〈x̂2〉, 〈p̂2〉, yielding:

〈x̂2〉 =
x20
2

(
1 + 2|cα|2 + c2α + (c?α)2

)
〈p̂2〉 =

~2

2x20

(
1 + 2|cα|2 − c2α − (c?α)2

) (6)

Based on equ. 4-6 we can calculate the standard deviations ∆x and ∆p. We obtain:

∆x =
x0√

2
∆p =

~√
2x0

(7)

This leads to the following minimal uncertainty product:

∆x ·∆p = ~/2 (8)

Next we represent the state ψα in the basis given by the number states φn:

ψα =
∞∑
n=0

dnφn (9)

According to the Fourier theorem, the coefficients dn are obtained by the scalar product

dn = (φn, ψα) =
1√
n!

(ân+φ0, ψα) , (10)

where φ0 is the ground state. We have used the fact that the number state φn is obtained by a
successive application of the raising operator â+. Continuing with equ. 10

dn =
1√
n!

(φ0, â
n
−ψα) =

cnα√
n!

(φ0, ψα) (11)

The last term C = (φ0, ψα) is a remaining constant, which needs to be determined through the
normalization condition. The wavefunction ψα looks now as follows:

ψα(x) = C
∞∑
n=0

cnα√
n!
φn(x) (12)

The normalization condition (ψα, ψα) = 1 yields:

(ψα, ψα) = |C|2
∞∑
n=0

|cα|2n

n!
= |C|2e|cα|2 = 1 (13)

Without loss of generality, let us chose the constant C ∈ R, so that C = exp(−|cα|2/2). I now also
add the time dependence, so that a coherent state can be decomposed as:

ψα(x, t) = e−|cα|
2/2

∞∑
n=0

cnα√
n!
φn(x)e−iEnt/~

ψα(x, t) = e−|cα|
2/2

∞∑
n=0

(cαe
−iωt)n√
n!

φn(x)e−iωt/2
(14)

Let us now define a new number α as follows:

α = cαe
−iωt (15)
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With this definition equation 18 can be written in a more compact form:

ψα(x, t) =

[
e−|α|

2/2
∞∑
n=0

αn

n!
φn(x)

]
e−ωt/2 (16)

The interesting thing is that the part in the bracket has exactly the form of a coherent state, now
with the eigenvalue α. The factor exp(−ωt/~) is irrelevant as it does not lead to any observable
effects.

The key point is that we have started with a coherent state at t = 0 with eigenvalue cα As time
evolves a coherent state remains a coherent state but with a new (time dependent) eigenvalue now
given by α = cαexp(−iωt). This can also be expressed as:

â−ψα(x, t = 0) = cαψα(x, t = 0) â−ψα(x, t) = αψα(x, t) (17)

Now we can calculate the time-dependent expectation value of e.g. position:

〈x〉 = (ψα, x̂ψα) =
x0√

2
〈â+ + â−〉

=
x0√

2
[(ψα, â+ψα) + (ψα, â−ψα)]

=
x0√

2
(α? + α) =

x0√
2

[
c?αe

iωt + cαe
−iωt]

=
2x0|α|√

2
cos(ωt+ δα)

(18)

where δα is the phase of cα. Now clearly, we do have a harmonic oscillation! The amplitude is given
by
√

2|α|x0. Hence, the magnitude of the eigenvalue corresponds to the amplitude of the coherent
state. We also stress that there are infinite eigenstates of the operator â−. For any arbitrary value cα
a coherent state can be written down. In the limit of large amplitude, the state represents a classical
motion quite accurately, because ∆x is fixed to x0/

√
2, while the amplitude grows. Hence, in this

limit the wavepacket is narrow.

The last part of this exercise you should try to do yourself. The goal is to calculate the expectation
values for a coherent state of the energy and the square of the energy from which one can derive the
standard deviation, i.e. calculate 〈H〉, 〈H2〉 and ∆E. The results is:

〈H〉 = ~ω
(
|α|2 +

1

2

)
〈H2〉 = (~ω)2(|α|4 + 2|α|2 +

1

4
)

〈H2〉 − (〈H〉)2 = |α|2

(19)

Hence, we can also state that the energy is given by the amplitude (i.e. |α|) squared and the energy
uncertainty can be written for energies much larger than ~ω as

∆E '
√
~ωE if E := 〈H〉 � ~ω (20)

Let us emphasize once again, a coherent state is not an energy eigenstate. But for large amplitude
(large energy) the energy uncertainty only grows with

√
E so that the relative accuracy of the energy

given by ∆E/E gets smaller and smaller as we pass over to the classical limit.


