Vorlesung Physik-3

Schönenberger group www.nanoelectronics.ch

Physik III Atom- und Quantenphysik

Kapitel 9: Feinstruktur und Hyperfeinstruktur

Prof. Dr. Christian Schönenberger www.nanoelectronics.ch

basierend auf der Vorlesung von Prof. Dr. Philipp Treutlein http://atom.physik.unibas.ch

Feinstruktur der Na D-Linie

Schönenberger group www.nanoelectronics.ch

Wellenlänge [nm]

D1-Linie: 589.59 nm D2-Linie: 588.96 nm

Zahlreiche weitere Linien von Wasserstoff und Alkali-Atomen weisen ebenfalls eine Dublett-Struktur auf

Gesamtdrehimpuls LS-Kopplung

Schönenberger group www.nanoelectronics.ch

Gesamtdrehimpuls: $\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$

Eigenwerte: $|\mathbf{J}| = h\sqrt{j(j+1)}$ mit $j = |l \pm 1/2|$ da s = 1/2 $J_z = \hbar m_j = \hbar (m_l + m_s)$ $m_j = -j, -j + 1...j - 1, j$

anschaulich: L und S präzedieren um den von ihnen aufgespannten Vektor J

Bsp.: I = 2, s = 1/2, j = 5/2

Bsp.: I = 1, s = 1/2, j = 3/2

Feinstruktur im H-Atom

Schönenberger group www.nanoelectronics.ch

- berücksichtigt: Spin-Bahn-Kopplung und relativistische Effekte
- gestrichelt: Energieniveaus En ohne Berücksichtigung der Feinstruktur

Niveaus mit selbem J sind entartet (wird erst durch Lamb-Verschiebung aufgehoben)

Demtröder, Abb. 5.22

Feinstruktur + "Lamb-shifts"

Schönenberger group www.nanoelectronics.ch

- berücksichtigt: Spin-Bahn-Kopplung, relativistische Effekte und Lamb-Verschiebung (komplette Feinstruktur und **QED-Effekte**)
- gezeigt für Wasserstoffzustände mit n = 2

Feinstrukturkonstante

Schönenberger group www.nanoelectronics.ch

Hierarchie der Energien im H-Atom

Bohr Bindungsenergie	$\alpha^2 mc^2$
Feinstrukturkorrektur	$\alpha^4 mc^2$
Lambshift	$\alpha^5 mc^2$
Hyperfeinaufspaltung	$(m/m_p)\alpha^4 mc^2$

Lamb-Rutherford Experiment

Schönenberger group www.nanoelectronics.ch

Abb. 12.22. Zur Messung der Lamb-Verschiebung: ein Atomstrahl aus H-Atomen wird durch Elektronenbeschuß in den metastabilen $2S_{1/2}$ -Zustand angeregt und durchfliegt so einen Resonator. Wenn dort elektromagnetische Übergänge induziert werden, vermindert sich die Anzahl der im angeregten Zustand auf das als Empfänger dienende Wolfram-Blech treffenden H-Atome und damit der gemessene Elektronenstrom. Das Magnetfeld \vec{B} dient zu einer zusätzlichen energetischen Trennung der Zustände $S_{1/2}$ und $P_{1/2}$. Damit wird eine Mischung dieser Zustände und damit ein unmittelbarer Zerfall über den Zustand $2P_{1/2}$ behindert

Vollständiges Termschema H-Atom

Schönenberger group www.nanoelectronics.ch

Fein- und Hyperfeinstruktur sowie Lamb-Verschiebung nicht massstabsgerecht gezeichnet

Demtröder, Abb. 5.34

Feinstruktur + "Lamb-shifts"

Schönenberger group www.nanoelectronics.ch

UNI

Anomaler Zeeman-Effekt

Schönenberger group www.nanoelectronics.ch

Zeeman-Effekt für Feinstrukturzustände

Zeeman-Effekt für Feinstruktur

Schönenberger group www.nanoelectronics.ch

Hier: **LS-Kopplung** und rel. Korrekturen **dominieren** über externes Magnetfeld. Daher folgt Aufspaltung der Quantenzahl m_J mit speziellem g-Faktor gemäss Landé

Optisches Pumpen

Schönenberger group www.nanoelectronics.ch

Untersuchung von Zuständen mittels optischer Spektroskopie kombiniert mit Hochfrequenzresonanz (ESR)

Abb. 13.17. Optisches Pumpen am Übergang ${}^{2}S_{1/2} - {}^{2}P_{1/2}$ des Natrium-Atoms. Im Felde B_0 spalten die Terme in die Zeeman-Terme mit $m_j = \pm 1/2$ auf. Nur Atome im Grundzustand $m_j = -1/2$ absorbieren das eingestrahlte σ^+ -Licht. Bei der Emission aus dem angeregten Niveau werden durch π -Übergänge Atome im Grundzustand mit $m_j = +1/2$ angereichert. Mit dem hochfrequenten B_1 -Feld wird durch Übergänge von $m_j = +1/2$ nach $m_j = -1/2$ die Anzahl der absorbierfähigen Atome erhöht

Haken-Wolf

Aufspaltung im Magnetfeld

Schönenberger group www.nanoelectronics.ch

BASEL

Hyperfeinzustände Schönenberger group www.nanoelectronics.ch

Zeeman-Aufspaltung im Magnetfeld für Hyperfeinzustände

