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Abstract. The quantum transport effects in semiconductor nano-structu­
res discovered during the past two decades are summarized. Brief physical 
arguments for their explanation are provided. Possible directions of future 
research are outlined. 

Due to their unique adjustability of charge carrier density by exter­
nal means, semiconductor inversion layers have been proven to provide an 
outstanding laboratory for the investigation of quantum mechanical phe­
nomena in condensed matter. During the past two decades, a great variety 
of hitherto unforeseen quantization and coherence effects in their electrical 
transport properties have been discovered. The most prominent example is 
the quantum Hall effect. The finding ofthe quantization ofthe Hall conduc­
tivity of MOSFETs in integer multiples of e2 jh at low temperatures and 
sufficiently strong magnetic fields initiated an "industry" of experimental 
and theoretical research. The Integer Quantum Hall effect established a 
completely new tool for the investigation of localization phenomena. The 
subsequent discovery of the Fractional Quantum Hall effect gave rise to to­
tally unexpected developments concerning the effects of the Coulomb inter­
action. Novel phases of the interacting two dimensional electronic system, 
like the "incompressible electron fluid", were found. New routes to well 
known concepts like the Wigner crystal suddenly became experimentally 
accessible. 

With refined preparation techniques, it became possible to prepare in­
version layers that are laterally structured. Quasi-one dimensional inversion 
layers exhibit unique quantization and fluctuation phenomena. Systems of 
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two-dimensional point contacts were designed to form islands of electrons, 
quantum dots, which showed characteristic oscillatory transport behavior 
- signature of the Coulomb repulsion between the electrons. Arrays of 
quantum dots were discovered to allow for the systematic experimental 
study of signatures of chaos in quantum systems. The long-standing the­
oretical prediction of persistent currents in normally conducting metallic 
systems was experimentally verified by using a structured inversion layer 
imbedded in a AIGaAs/GaAs-heterostructure. Even nowadays the field is 
still rapidly evolving. No saturation of the activities is yet in sight. Practi­
cally every year a new effect is reported in the literature. 

In the following, a brief survey of the quantum transport effects in nano­
structured semiconductors which were discovered during the past two deca­
des is given [1]. Emphasis will be on those aspects which are not discussed 
in the articles. Topics which are explained in detail in the later chapters 
will only be briefly addressed. 

1. The Mesoscopic Regime 

1.1. FROM DIFFUSIVE TO QUANTUM TRANSPORT 

The classical charge transport in metals is described by the Drude theory 
[2]. The basic result is that the DC-conductivity of a metal is 

(1) 

with the density of the electrons (charge -e) n, the effective mass m and 
the mean free time r. The latter incorporates all of the scattering processes 
the electrons suffer from static impurities, vacancies and dislocations, and 
also from other elementary processes like electron-phonon and electron­
electron scattering. The basic assumption behind the Drude theory is that 
scatterings are incoherent: the electrons, "after having suffered a collision, 
do not remember that they existed before". Subject to the influence of 
the electric field, they move diffusively through the lattice of the metal 
ions. One of the consequences of this is Matthiesen's rule, stating that the 
contributions of different scattering processes are independent and additive, 
i. e. the total scattering rate is given by the sum of the corresponding rates. 

At sufficiently low temperatures this assumption breaks down. The 
quantum mechanical nature of the electrons comes into play. Incoherent 
processes that destroy the "phase memory" of the electrons, as electron­
phonon scattering, are more or less frozen out. What remains is scattering 
at the impurities which is not incoherent. The quantum mechanical state 
of an electron depends on the configuration of all of the imperfections. 
This important fact, which is the backbone of the physics of almost all of 
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the mesoscopic transport phenomena, became obvious only about twenty 
years ago when at temperatures close to absolute zero the weak localiza­
tion correction to metallic conduction in thin metallic films - quasi-two 
dimensional metallic systems - was discovered [3]. 

The thickness of the inversion layers in semiconductor hetero-structures 
is of the order of 5nm. Therefore, they can be considered as almost ide­
ally two dimensional. They are perfect laboratories for the investigation of 
quantum coherent transport phenomena because it is possible to change 
the electronic properties by doping, and the electron density by applying 
an external gate voltage, in contrast to metallic systems. In addition, the 
lateral structure of the inversion layers can be systematically influenced by 
voltages at external gates. This enables us to construct single point contacts 
and also small islands of confined electrons - "artificial atoms" - which 
show transport quantization properties that are not at all predicted by the 
semi-classical theory, and they are externally tunable [4]. The arsenal of 
tools for the systematic investigation of quantum transport effects in struc­
tured semiconductors is completed by externally applied magnetic fields. 
This causes a number of additional, most surprising effects which are also 
not foreseen when using the semi-classical theory of electron transport. 

1.2. MESOSCOPIC LENGTHS SCALES 

There are several lengths scales which can be used to characterize the meso­
scopic transport regime. The presence of imperfections in a metallic system 
gives rise to the elastic mean free path 

(2) 

with the Fermi velocity VF. It is the only limiting length for transport at 
T = 0 and is independent of the temperature. The mean free time 7 has 
to be determined by quantum mechanical theory. If the perturbation in­
troduced by the impurities is only weak one can use perturbation theory. 
In lowest order, 7-1 ex V2 where V is the random impurity potential. It 
is very important to note here that the elastic mean free path has nothing 
to do with the destruction of phase coherence. In principle, the underlying 
impurity scattering can be exactly taken into account by diagonalizing the 
Hamiltonian of the electron in the presence of the impurity potential. In 
metallic systems, .e is usually of the order of nanometers. In very pure semi­
conductor hetero-structures the mean free path can be much longer than 
lOjLm, several orders of magnitude larger than the interatomic distance! 

At finite temperatures, there are basically two additional limiting influ­
ences on the transport. First of all, the conductivity is an average over the 
states within an interval IlE ex kT near the Fermi level, as one can easily 
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l = VpT 

Figure 1. Diffusive motion of a particle in an impure metal at a temperature close to 
absolute zero under the influence of impurity scattering (mean free path f. = VFT), and 
rare phase randomizing scattering processes (shaded circles, phase coherence length Lcp). 

see by using the Kubo formula. Since the phases of different eigenstates 
are completely independent, we expect a decay of the average correlation 
function on a time scale 

TT(T) ex (kT)-l. (3) 

This is usually interpreted as a temperature-induced phase coherence time. 
On the other hand, interactions with other elementary excitations as phonons 
or the Boson-like pair excitations of the electrons, lead to mixing of the 
one-electron states. These scatterings are in general inelastic and therefore 
lead to phase incoherence with a temperature dependent characteristic time 
Ti(T) which is the mean free time between inelastic scattering events. If one 
assumes that at low temperatures phase randomizing processes are suffi­
ciently rare in comparison with the mean free time due to the impurities 
one can determine a phase coherence length by assuming diffusive trans­
port - due to the impurity scattering - between two phase destroying 
scattering events (Fig. 1), 

(4) 

The phase coherence time T cp is the mean free time between two successive 
phase randomizing events. The diffusion constant D contains only the im­
purity scattering which does not destroy quantum coherence. It is related 
to the residual conductivity via the Einstein relation 

(5) 

where p is the state density at the Fermi energy. In general, the relation 
between T cp and Lcp is more complicated. For instance, in the hopping region, 
where D = 0, Lcp is given be the mean hopping distance. 

The temperature dependence of Lcp is determined by the nature of the 
contributing scattering processes and is presently a subject of the research 
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world-wide. The understanding is far from complete. Generally, one as­
sumes for the phase coherence time in a metal (D :f. 0) 

(6) 

with 1 :S p :S 5 depending on the nature of the scattering, the temperature 
and other parameters. At low temperature, the smallest of the phase coher­
ence times limits the transport. If p > 1, the phase coherence at very low 
temperatures is eventually given by TT ex (kT)-l such that Lcp ex T-l/2. 

It is now easy to provide a criterium for mesoscopic transport: the tem­
perature has to be so low that Lcp(T) > L, the geometrical diameter of the 
sample. Typically, in metals Lcp(1K) = O(1J.lm). In semiconductor systems, 
especially when a magnetic field is applied, Lcp can be considerably larger. 
We can also specifiy now what we mean by ad-dimensional meso scopic 
system: if the thickness of the system in, say, the z-direction is smaller 
than Lcp we have a two dimensional system. When in addition Lcp is larger 
than the extensions in the x and v-directions, the dimensionality will be 
further reduced to d = 1 and d = 0, respectively. 

2. Mesoscopic Transport Phenomena 

2.1. THE INTEGER QUANTUM HALL EFFECT 

The Quantum Hall Effect was discovered in 1980 by Klaus von Klitzing 
when he investigated the magneto-transport properties of the inversion 
layer in a Silicon MOSFET at low temperature (T ~ 1K) and at high mag­
netic field (B ~ 20T) [5]. He found that when the (negative) voltage at 
the gate of the transistor was increased, the Hall voltage did not decrease 
monotonically. Such a decrease is indeed expected according to the classical 
theory of the Hall effect, when assuming that the charge density in the in­
version layer decreases monotonically with increasing gate voltage. Instead, 
the Hall voltage was found to remain constant in certain regions. Here, the 
voltage parallel to the source-drain current turned out to be unmeasurably 
small. The corresponding values of the Hall resistance RH were precisely 
given by integer fractions of RK = hJe2 , 

(i = 1,2,3,,, .). (7) 

The Hall conductance rH = 1JRH is then quantized in units of e2 Jh, the 
Sommerfeld constant. 

While the relative accuracy of the quantization in first experiment was 
only of the order of e few 10-6 , later experiments, done at lower tempera­
tures, T ~ 50mK, and different samples, AIGaAsJGaAs hetero-structures, 
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showed a dramatic increase in precision. Nowadays, the reproducibility of 
the plateaus is better than 10-8 such that the Quantum Hall Effect is used 
as a standard for the electrical resistance. 

A number of fundamental questions emerged as a result of the discovery 
of this first of the quantization effects in electrical transport. One of the 
conclusions of the weak localization theory of transport was that two di­
mensional disordered quantum systems at zero temperature cannot conduct 
the electrical current due to strong enhancement of quantum backscatter­
ing. All of the quantum states are localized. Under these conditions, it 
was hard to believe that such a precise, material-independent quantization 
effect could exist. The only way out was the assumption that the strong 
magnetic field delocalized at least a few of the states [6]. 

This hypothesis could be confirmed by later numerical calculations [7]. 
The results showed that indeed all of the states in two dimensional disor­
dered systems in a strong magnetic field are localized. However, the local­
ization length was found to diverge in the centers of the Landau bands, 
E = 0, with a power law 

(Ao = constant). (8) 

The critical exponent was quantitatively determined, v = 2.34 ± 0.04, and 
shown to be universal, i. e. independent of the nature of the randomness, 
and the Landau band index. By using this divergent behavior and assuming 
that the largest possible localization length in the system was the temper­
ature dependent phase coherence length it turned out to be possible to de­
termine, for instance, the temperature dependence of the widths of the Hall 
plateaus. The results were consistent with the experimental findings. Fur­
ther experiments done on samples with different geometrical sizes yielded 
even a value for the exponent that was consistent with the above result [8]. 

Basically, the existence of the singularities of the localization length in 
the centers of the Landau bands my be qualitatively understood by consid­
ering the percolation limit: for an extremely high magnetic field the mag­
netic length fB == (hi eB)1/2 is small compared with the spatial correlation 
length of the random potential. Then one can show that only the Landau 
states centered at the positions corresponding to the randomly percolating 
equi-potentiallines defined by V( TE) = E contribute to the eigenstates at 
energy E in the presence of disorder [11, 12]. The localization problem is 
reduced to a percolation problem: the "landscape" of the random poten­
tial is filled with water up to a given level - the energy of the state. The 
shore lines correspond to the equi-potentiallines. For low water level, there 
are only isolated lakes. All shore lines are closed. The states are localized. 
Correspondingly, for high water levels, there are isolated mountains in a 
sea of water. Again all of the shore lines are closed, and the corresponding 
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states localized. It is intuitively clear that there must be exactly one water 
level at which one can reach two different edges of the system by travelling 
along the shore lines. This corresponds to the percolation threshold, and 
represents the energy where the localization length diverges. 

In this way, the integer Quantum Hall Effect was identified as a degen­
erate metal-insulator transition. Although there is no predictive theory up 
to now which explains why the plateaus in the Hall resistance are practi­
cally exactly given by integer fractions of the von Klitzing constant RK, a 
large number of new quantum properties were discovered when attempting 
to find such a theory. A most important discovery of the past years was 
that the states at the critical point have multifractal properties [9, 10]. 

A further important discovery was that in two dimensional systems in a 
strong magnetic field quantum coherent edge states play an important role 
for the understanding of magneto-transport [13, 14]. In the above picture 
of the landscape filled with water they can be vizualized by considering a 
landscape with boundaries represented by infintely high walls. Then one of 
the shore lines goes around the whole system. In the semi-classical picture 
of magneto-transport edge states correspond to the so-called "skipping 
orbits" which are essentially cyclotron orbits travelling along the edges. 

Edge states can have coherence lengths even of several hundred microm­
eters due to the absence of backscattering induced by the magnetic field. 
They might play an important role for the explanation of the precision of 
the Quantum Hall Effect. 

2.2. FRACTIONAL QUANTUM HALL EFFECT 

The integer Quantum Hall Effect initiated numerous experimental and the­
oretical investigations of the two dimensional electron systems in semicon­
ductor hetero-structures. A very important discovery only a few years later 
[15] was the fractional Quantum Hall Effect. In highly pure AIGaAsjGaAs 
samples with electron mobilities higher than, say 100000 V cmj s2, the Hall 
conductance was found to be quantized at certain rational multiples of e2 j h, 

(p, q integers). (9) 

First attempts to explain the additional plateaus which appeared at the 
rational filling factors v == nhjeB = pjq within the one-electron approxi­
mation failed. Very rapidly, it became clear that the Fractional Quantum 
Hall Effect was a direct manifestation of the electron-electron interaction 
in the two dimensional system subject to the strong magnetic field. There 
have been several attempts to construct the many particle states for this 
system [16, 17]. Numerical diagonalizations of several interacting particles 
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provided interesting information about their properties [18]. An important 
feature is their incompressibility which is thought to be crucial for the ex­
planation of the Quantum Hall Effect. The incompressible electron fluid is 
presently a subject of extremely active research. For the first time, there 
are experimental possibilities to prepare externally controlled correlated 
many-particle states and to perform systematic experiments in order to 
investigate their nature. Important fundamental questions, for instance, 
whether or not, and under what conditions, a Wigner solid is formed in 
the two dimensional electron system in semiconductor inversion layers, can 
now be investigated in great detail. 

The physics of the Quantum Hall Effect is reviewed extensively in the 
articles by R. Haug and A. H. MacDonald in the second chapter. 

There are also predictions that edge states exist in the fractional quan­
tum Hall regime. They are of particular importance since they can possi­
bly be used to study experimentally [19] the effect of the interactions on 
the properties of one dimensional electron systems. The latter seem to be 
paradigms of non-Fermi liquid behavior. The articles on the Luttinger liq­
uid in the chapter on "Interactions and Correlations" provide a panorama 
of many aspects of this presently very active field. 

2.3. CONDUCTANCE OF POINT CONTACTS AND QUANTUM WIRES 

In contrast to their classical counterparts, properties in mesoscopic physics 
can be quantized. The above example shows that this can also be the case 
for non-equilibrium properties such as transport. In the Quantum Hall 
Effect, the quantization was induced by a magnetic field. In this section, 
I briefly discuss the quantization of low-temperature transport caused by 
geometrical confinement. 

Experimentally, this was observed for the first time in 1988 [20,21]. In 
these experiments, the two dimensional inversion layer in AIGaAs/GaAs 
hetero-structures were structured laterally by applying a negative voltage 
to a metallic "split gate" above the electron gas. The applied gate voltage, 
if it is sufficiently high, eventually leads to a depletion of the electron den­
sity below the electrodes. Only below the opening between the two gate 
electrodes the electron density can be non-zero. The electrical conductance 
of this "point contact" changes discontinuously with the electron concen­
tration or the width of the opening: it is quantized in units of e2 I h. 

It is comparatively simple to understand this effect qualitatively. Con­
sider a gas of non-interacting electrons confined within a strip of length 
L( -+ 00) (periodic boundary conditions) and width W. The geometrical 
constriction within the strip leads to an energy spectrum which consists 
essentially of one dimensional energy bands EiJ(k) ex: EiJ + Ti, 2k2 /2m. Here, 
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Ep. (X W-2 is the quantization of the energy induced by the constriction. 
Assume that at T = 0 only J.Locc of the subbands are occupied. The Fermi 
velocity in each of the bands then depends on the band index J.L 

(10) 

Further, we assume that there are no scattering processes within the 
system length L (the length ofthe constriction in the split gate geometry). 
Indeed, the experiments were performed using samples with very high mo­
bility with mean free paths of the order of 10J.Lm, whereas the geometrical 
dimensions of the constriction were about 1 X 0.25J.Lm2. The time needed 
by an electron with velocity vp. to pass the interval of the length L is 

(11) 

By inserting into the Drude formula for the conductivity, eq. (1), and re­
membering that the electron number density in the J.L-th subband is 

np' = 'XV2m(EF - Ep.), (12) 

one obtains for the corresponding contribution to the conductivity up. 
e2 L / h. The total conductance of the constriction, r == u / L is then 

e2 

r = L up. = J.Locc-;;. 
p. 

(13) 

If the sub bands are spin-degenerate this expression has to be multiplied by 
a factor of two. A magnetic field lifts the degeneracy. 

It is obvious that the complete theory is more difficult. For instance, the 
above assumption of ideal one dimensional energy bands is certainly not 
valid for a constriction of a finite length of the order of a few micrometer. 
One can, however, show that sufficiently smooth constrictions, i. e. when 
the radius of curvature is large compared with the Fermi wavelength, the 
corrections to the quantized values are very small [22]. Also the presence of 
disorder [23] or the interaction with phonons (at finite temperatures) [24] 
do not lead to an immediate breakdown of the quantization of conductance. 
All of these effects can be treated by standard quantum theory essentially 
quantitatively. The results are consistent with experimental findings. One 
can summarize that the quantization of the conductance of point contacts 
in semiconductor inversion layers seems to be presently a relatively well 
understood phenomenon. An open question, which is the subject of present 
theoretical and experimental work, is whether or not electron-electron in­
teraction leads to a renormalization of the quantization, as predicted by 
the theory of transport in the Luttinger liquid (cf. chapter 3). 
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Less complete is the understanding of the behavior of the conductance 
when several gates are used to laterally confine the electrons within a finite 
region in the plane. Two point contacts in series, for instance, can be used 
to confine the electrons between them. In such a way, an electron island -
an "artificial atom" or "quantum dot" - is formed, with rather peculiar 
transport properties. They will be discussed below in more detail. One can 
also fabricate small electron cavities of a shape which would lead in the clas­
sicallimit to chaotic behavior [25]. Investigation of the quantum transport 
in such systems provides in principle valuable insight into the connection 
between classical chaos and quantum behavior, one of the subjects that are 
now intensively studied theoretically as well as experimentally. 

A paradigmatic system which is very suitable for the study of "quantum 
chaotic behavior" is a regular array of quantum dots in a perpendicular 
magnetic field. The article of D. Weiss introduces into this subject. 

2.4. QUANTUM BLOCKADES 

Transport experiments on "artificial atoms" at low temperatures exhibit 
also distinct and strong signatures of electron-electron interaction. This 
can be used to manipulate single electrons. 

The Coulomb blockade effect was first seen in experiments that were 
done on tunnel contacts between metallic systems [26,27]. In semiconduc­
tors, "artificial atoms" fabricated by using two split gates in series on top 
of an AIGaAs/GaAs hetero-structure [28] were used to demonstrate the 
drastic effect of the Coulomb repulsion on the tunneling of electrons. The 
current through the two point contacts was measured at millikelvin tem­
peratures as a function of the voltage applied to a gate at the back of the 
structure for fixed bias voltage. The back gate serves to change the den­
sity of the electrons in the island between the point contacts. The current, 
which is then directly proportional to the conductance, shows characteristic 
resonance-like peaks that are equidistant. 

The analysis of the experimental data showed that each peak in the 
current corresponds to exactly one electron passing the island. There was 
no Zeeman splitting of the peaks when a magnetic field was applied. The 
energetic distance between the peaks turned out to be given by the Coulomb 
energy of the electrons in the island. 

The condition for zero-temperature linear transport through such a 
structure is that the difference between the ground state energies of N + 1 
and N electrons within the island lies within the interval between the Fermi 
energy EF and EF + eV (V bias voltage), 

EF + eV ~ E(N + 1) - E(N) ~ EF. (14) 



13 

Assuming that the ground state energy is given by the electrostatic Coulomb 
energy (N ~ 1) 

2N2 
E(N)~ _e _ 

2C 

where C is the capacity of the island, one obtains for V ~ e/C 

Ne 2 

EF(N)~ C. 

(15) 

(16) 

Assuming further that the Fermi energy is proportional to the voltage at the 
back gate, EF = a Vg (a constant), the voltage difference between successive 
peaks in the current should be 

(17) 

Between the peaks linear transport is not possible, due to the Coulomb 
repulsion. 

The Coulomb blockade effect can be used to construct standard for the 
electrical current in which electrons are transported one-by-one through 
the island by applying an AC-voltage to the island via a gate. The current 
through this "turnstile device" [29] is given by the electron charge multi­
plied by the frequency of the AC voltage - typically of the order of a few 
MHz - which can be very accurately calibrated. Unfortunately, the cur­
rents that can be produced by this device are presently rather small, of the 
order of pA, and the accuracy is limited by several inherent physical effects 
as, for instance, simultaneous tunneling through both of the point contacts, 
to approximately 10-4 . Another application of the Coulomb blockade effect 
is the "single electron transistor" [30] (see Chapter 3 of this volume). 

The Coulomb blockade of linear transport can be considered to be a 
consequence of the quantization of the charge, and the "selection rule" 
that the minimum charge that can enter or leave the electron island is e, 

~Qisland = ±e. (18) 

This point of view leads immediately to a generalization: the blocking of 
transport processes by selection rules corresponding to other quantum num­
bers. 

For instance, since each electron which enters or leaves the island carries 
exactly the spin 1/2 the total spin of the electrons on the island can change 
only by ±1/2. Obviously, there is a "spin selection rule" 

(19) 
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If the two successive ground states with Nand N + 1 particles differ in their 
spins by more than 1/2 the corresponding peak in the linear conductance 
should be suppressed. 

In non-linear transport the electron spin can even lead to a negative 
differential conductance [31,32]. When the total spin S(N) of N electrons 
in the island is N /2, an electron can leave the dot only by simultaneously 
lowering the total spin by 1/2,in contrast to the general case, 1/2 < S(N) < 
N /2 where the total spin can be increased or decreased by 1/2 depending 
on the polarization of the spin of the leaving electron. This reduces the 
possibilities for decreasing the number of electrons in the island. Thus, 
when increasing the voltage such that a totally spin-polarized excited state 
starts to contribute to the transport, the current through the quantum dot 
may be decreased [33, 34]. The "spin blockade effect" is, discussed in the 
article by D. Weinmann in chapter 4. 

2.5. QUANTUM INTERFERENCE 

The direct experimental confirmation of the quantum interference mech­
anism underlying theory of weak localization was the detection of the 
Aharonov-Bohm like oscillations of the magneto-resistance ofthin metallic 
cylinders [35, 36, 37]. They have diameters of about 1-2JLm such that the 
electron states at low temperature are coherent around the whole circum­
ference. If such a sample is placed into a magnetic field directed along the 
axis of the cylinder, electrons which travel clockwise around the cylinder 
(amplitude At) experience a phase shift relative to those travelling counter­
clockwise (amplitude A2 ). The phase shift is given by the magnetic flux ~ 
enclosed by the paths of the electrons, 

~ _ 41r~ 
<p - ~o' 

The total backscattering probability is 

h 
~o ==-. 

e 
(20) 

(21) 

When the magnetic field is changed, the interference term leads to maxima 
in the backscattering probability at fluxes n~o/2 (n = 0, ±1, ±2, ... ) cor­
responding to constructive interference. This is reflected in maxima in the 
magneto-resistance. 

The important point is that the scattering at the impurities, which are 
in any case present in the sample, does not destroy the quantum mechan­
ical coherence of the states. Indeed, from the magnitude of the residual 
resistance the electronic mean free path due to impurity scattering was 
estimated to be orders of magnitudes smaller than the sample diameter. 
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Classically, the electrons diffuse around the cylinder. Nevertheless, one ob­
serves effects which prove that the electrons are extended coherently around 
the whole circumference! 

A further, most direct and impressive proof of the wave nature of the 
electron are the so-called persistent currents in small normally conducting 
rings subject to a penetrating magnetic flux. They have been predicted 
decades ago [38]. It has been only in 1990 that they have been experimen­
tally detected [39,40,41]. 

The basic physics can be understood by considering an ideal, one di­
mensional ring penetrated by an Aharonov-Bohm flux <1>. The states ofthe 
(non-interacting) electrons are plane waves with wave vectors 

n = 0,±1,±2, .... (22) 

The corresponding energy, Ek(<1» = h,2k 2 /2m, is a function of the flux. It 
is very similar to that of a one dimensional empty lattice as function of 
the quasi-wave vector. Apparently, the spectrum is periodic in <1>/<1>0 with 
the period 1. Therefore, one needs to consider only the interval -1/2 < 
<1> /<1>0 :::; 1/2. Due to the presence of the flux the states carry a diamagnetic 
current. It is easily calculated to be 

(23) 

The total current is then given by the sum of the contributions of all of 
the occupied bands, weighted by the Fermi function corresponding to the 
temperature T. 

The presence of a time-independent (impurity) potential does not change 
the above situation, except that the amplitude of the current is reduced by 
a factor which depends on i/ L <€:: 1. One has to emphasize here that the 
persistent current is qualitatively different from the current in a transport 
experiment since it is an equilibrium property of the system. Although the 
latter has a finite resistance, due to the presence of the impurities, the 
persistent current does not decay (at T = 0). 

Except for the most recent experiment which was done on a ring in an 
AIGaAs/GaAs hetero-structure [41] the experimental results indicate that 
in metallic rings are at least an order of magnitude larger than predicted 
by the current theories [42]. This reflects the limitations of present days' 
understanding of the interplay between disorder and interaction in metallic 
mesoscopic systems. 

The recent efforts to improve the experiment - which is definitively at 
the borderline of measurement technology, since it involves very low tem­
peratures and extremely sensitive detection of magnetization in addition to 
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highly advanced nano-fabrication technology - are described in the paper 
by A. Benoit in chapter 4. 

3. Theory of Mesoscopic Transport 

The fundamental feature of the physics of nano-structures at low tempera­
tures, namely the coherence of the quantum states over distances much 
longer than the mean free path, is also one of the main obstacles for 
the formulation of the theory of transport. Due to the absence of phase­
breaking, inelastic processes in the sample the basic assumption of the 
Drude-Boltzmann theory breaks down, as mentioned before. As a result, 
it is not only the microscopic properties of the sample which determine the 
transport, but also its geometry, and in particular how a measurement is 
done. It is, for instance, no longer possible to define a macroscopic, constant 
parameter "conductivity" which is independent of the sample's geometry, 
and depends only on microscopic features as the nature of the atoms, their 
distances and the effective mass. Inherently, as a result of the coherence, 
the relation between current density and electric field becomes non-local 

j(x) = J dx'a(x,x'jw)E(x'). (24) 

The non-local conductivity a has to be calculated microscopically by linear 
response theory. It is only for an infinite system with incoherent scattering 
that one can replace a( x, x' j w) by an average value. Then, the relation 
between current density and voltage becomes local. 

Unfortunately, the spatial distribution of the internal electric field E( x) 
is not known. Its shape depends in a complicated way on the external 
potentials and incorporates also the influence of the interacting electrons. 
On the other hand, in the experiment, one measures the current through a 
sample as a result of an external voltage. Therefore, it is desirable to have 
a theory which connects not the local current density with the local electric 
field but the total current with the external voltages. In other words, one has 
to construct a theory for the conductance r which depends on the sample 
geometry, in order to characterize the linear transport. 

One of the first to note this striking difference between classical and 
quantum transport was Landauer [43]. Already in 1971, he established 
the close connection between current transport in the quantum coherent 
regime and the transmission probability T for a quantum mechanical par­
ticle through a potential. The basic conjecture, namely 

e2 
r=-T, 7rn (25) 
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is now widely accepted, and describes many of the experimental findings. 
It can also be derived from the quantum mechanical linear response the­
ory, applied to a system which is connected to infinitely long ideal leads 
[44, 45, 46]. One of the striking findings of this approach, which is also 
true in the presence of interactions [47], is that the total current is only 
determined by the integral over the electric field, i. e. the external voltage. 
The current status of the Landauer approach to meso scopic transport and 
its later generalizations by Biittiker, is summarized in chapter 5. 

Unfortunately, it is not straightforward to modify the Landauer-Biittiker 
theory of mesoscopic transport to the frequency and time domain, and to 
interacting particles. This is the subject of current research. A few ideas 
are contained in the - certainly very incomplete - last chapter, in the 
introduction to the Luttinger liquid by M. Sassetti in chapter 3 and in the 
review article by M. Biittiker and T. Christen in chapter 5. It is obvious 
that future work has to concentrate more than before in this area, last but 
not least since future electronic devices based on nano-structures will have 
to operate at very high frequency, and the understanding of the underlying 
fundamental physics is imperative. 

4. What has not been Mentioned 

Topics not included in this" crash course" of mesoscopic transport in semi­
conductor nano-structures are details of the weak localization phenomena, 
the reproducible fluctuations of the conductance, the non-locality of the 
quantum transport which is an inherent feature due to the "stiffness" of 
the quantum states as a consequence of the coherence, stochastic time­
dependent effects like "telegraph noise" , and all kinds of mesoscopic effects 
in super conducting systems. Their treatment is beyond the scope of this 
introduction and also of this book. They are broadly described in [1]. 

Valuable discussions with Maura Sassetti, Andrea Fechner, and Rolf 
Kilian are gratefully acknowledged. 
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