Quantum Transport FS 2015

lecture given in spring 2015 by:

Christian Schönenberger Dominik Zumbühl Andreas Baumgartner Markus Weiss

lecture is on Tuesdays 16:15 - 18:00

exercises are on Thursdays from 10:15 till 12:00

you must attend the exercises if you want to get the credit points in the last exercise we will make a written test condition for credits: pass the test and have attended 80% of the exercise classes

all in English

1. Quantum Transport / Introduction

a chip carrier with a "sample" connected by bonding wires

usually fabricated by lithography methods

often measured in a cryostat measurements mostly electrics, but other degrees also of interest (e.g. photons)

1. Intro / Measurement techniques

1. Intro / Motivation / history

"Chip" integrated circuits

GHz electronics

all times

ad Blaupunkt 1959

1. Intro / Bioelectronics

Biochip: "brain on a chip"

DNA memory

1. Intro / Molecular Electronics

molecular electronics: the computer in a test tube

1. Intro / Quantum electronics

der Stromfluss klassischer Elektronen rauscht wie ein tropfender Wasserhahn

the electron is **a quantum particle**, it can behave as a wave and therfore interfere :

quantum physics delivers concepts for a new way of computing → quantum computing

"The weirdest computer of all" (The Economist)

1. Technology plays a crucial role (but not only)

- **fabrication technology** (devices need to be made)
- devices get smaller and **smaller**
- signals get also smaller and **faster** and there is much more data
- **imaging** and analytics important
- engineering, physics, chemistry and biology may come together → language problem
- **new materials** may also give the field a decisive push

for example: nanowires

gold nanoparticles are used to catalyze the growth of nanowires

diameter ~ 10-50 nm

aus: M.T. Björk et al., Nano Lett. **2**, *87 (2002)* composition can be changed during growth

Carbon materials

Diamond (sp³ carbon):

- hard material
- very good electrical insulator, but still a very good heat conductor

(why ?)

Nanotubes:

metallic and semicondcuting ones: diameter 0.5 - 50 nm

Graphite (sp² Carbon):

- simple to write with (pencil)
- good electrical conductor

.335 nm

Carbon Nanotubes

...new formsof graphite

Carbon Nanotubes

Mit Carbon Nanoröhrchen lassen sich auch ultraleichte und ultrafeste Komposite herstellen, z.B. für Fahräder, Boeing und Airbus

Graphene

graphite is separated with a Scotch tape into it separate thinner layers

"Graphene" = Kohlenstoff-Monoschicht

in graphene, electrons bevhave in a way like relativistic massless particles

Micro- and Nanofabrication

copyright 1997 philg@mit.edu

1. Intro / Micro- and Nanofabrication Facility

How does it work: lithography

Lithographie von Basel. Druck über eine von Hand vorgezeichnete und danach geätzte Steinplatte

5. lift-off (resist removal)

Lithography for devices

Schönenberger group www.nanoelectronics.ch

Moderen Lithographie erlaubt uns, Strukturen im Bereich **weniger Nanometer** herzustellen. Hundertfache Wiederholdung führt zu einem Pentium Chip.

SWISS NANDOSCIENCE INTERITIVE DER LIMMERSTÄT BASEL UND DES KANTONS AARGAU

Focused Ion Beam (FIB) together with ZMB

operated as a shared facility by ZMB staff and located at the ZMB current users are: ZMB, Poggio, Schönenberger, Constable, Gerber, Stahlberg, Hierlemann (D-BSSE), Lim, Maletinsky, Meyer, Richter

Focused Ion Beam (FIB) together with ZMB

Poggio lab

Inner contact to graphene

transfer onto graphene

Cuts for SQUIDs

Cut with FIB

- d_{min} ~ 50 nm possible
- clean cut

Etched with SF6 (mask with Ebeam lithography)

- d_{min}~150 nm
- etched cuts are not as clean as with FIB

electron-beam writer at the PSI

SEM-based e-beam writer at SNI/Physics

currently run 2 of those systems (each 1 Mio), but ..

have higher demands:
a) more groups using it
b) higher resolution needed (< 10 nm possible)
c) better overlay accuracy (10nn stitching possible)
d) large area pattering

(large field with 24 bit)

nanoscience.ch

Dedicated Electron Beam Lithography

Home » Products » EBPG5200

EBPG5200

EBPG5000 Plus

VOYAGER

RAITH150 Two

eLINE Plus

PIONEER

ionLINE

ELPHY MultiBeam

ELPHY Plus

ELPHY Quantum

CHIPSCANNER

Superconducting nanowire single-photon detectors (SNSPD)

Warburton and Schönenberger groups (Basel)

Cooper-pair spllitter

apply quantum dots to split Cooper-pairs; proposal by Recher, Sukhorukov and Loss

semicond. nanowire or carbon nanotube

Hofstetter et al. Nature 461, 960-963 (2009)

Cooper-pair spllitter

modern one with a single CNT and coupled to an rf circuit work in progress

Carbon Nanotube (CNT) Quantum Dots (qdots)

CNT Qdots coupled to rf cavities

V. Ranjan et al. Nature Comm. (under review)

Graphene devices (suspended)

P. Rickhaus et al. Nature Comm. 4, 2342 (2013)

some more pics of devices

2. Quantum Primer

a) Wave-Mechanics ("like" optics, acoustics ...) (energy E=const) Schrödinger Helmholz $\left\{ \Delta + 2m \left(E - V \right) / \hbar^2 \right\} \psi = 0 \quad \left\{ \Delta + \left(E / c\hbar \right)^2 \right\} \psi = 0$ $\left\{\Delta + k^2\right\} \psi = 0$ $\psi = A \exp(iS/\hbar)$ waves: A: Amplitude $\Theta = S / \hbar$ *Phase* (determined by the action S)

(the whole classical physics is contained in the phase)

b) add some weirdness

uncertainty relations: $[x, p] = i\hbar$

(not quite weird, formally a consequence of Fourier transformation)

c) some more weirdness

Copenhagen interpretation of Ψ "collapse of wavefunction"

- linear superposition
- cat is both dead and alive
- only if measured is the cat either dead or alive!

2. Quantum Primer

superposition

many measurements:

50% point up 50% point down

quantum physics is therefore probabilistic and not deterministic

"Gott würfelt nicht!"

d) higher level weirdness

many-particle states, entangled states!

- we all live on quantum mechanics
- we would not exists without QM!
- a classical world is unstable!

3. Conceptual discussions (blackboard)

- quantities yielding different energies, T, B, f, L ...
- ballistic vs diffusive
- quantum coherence
- energy conserving vs relaxation (damping)
- what is classical, which classical concepts break down
- quantum transport "phenomenology"

3. Conceptual discussions (blackboard)

Limit	Length	Conserved quantity
Ballistic \downarrow elastic scattering:	$L \ll \ell_{\rm el}, \ell_{\rm e-e}, \ell_{\rm e-ph}$ randomizes momentum dir	current for each momentum state rection
$\begin{array}{c} { m Diffusive,} \\ { m non-equilibrium} \\ \downarrow & { m electron-electron s} \end{array}$	$\ell_{ m el} \ll L \ll \ell_{ m e-e}, \ell_{ m e-ph}$ scattering: mixes different e	current for each energy nergies
Quasi-equilibrium	$\ell_{\rm el}, \ell_{\rm e-e} \ll L \ll \ell_{\rm e-ph}$	charge and energy currents
\downarrow electron-phonon scattering: energy exchange with environment		
Local equilibrium	$\ell_{\rm el}, \ell_{\rm e-e}, \ell_{\rm e-ph} \ll L$	charge current

Table 2.1 Different limits for the distribution function, defined by comparing the size L of the wire to the scattering lengths.

4. Phenomena in quantum transport

4.1 Quantum Hall Effect

1980 discovered by K. von Klaus von Klitzing in Grenoble Untersuchung der Hall-Spannung von MOS-FET bei tiefen Temperaturen und starken B-Feldern

Deutung: **Quantisierung** des Hall-Widerstands 1985 Nobelpreis für Physik

Originalprobe. Deutschen Museum Bonn

4.1 Quantum Hall Effect

excitations (quasiparticles) have fractional charge (observed in experiment)

Störmer, Tsui, Laughlin

4.2 Quantum wire

Gate Voltage ∞ width *w*

van Wees, van Houten 1988

4.2 Quantum (wire) point contact (QPC)

4.2 Quantum point contact (QPC)

pioneered by Jan van Ruitenbeek, C. Urbina et al.

4.2 Quantum point contact (QPC)

4.3 Quantized charge and flux

superconducting ring

charge Q is quantized

Q = ne

(capacitor C)

flux Φ is quantized

 $\Phi = n(h/2e)$

(inductor L)

solid-state version of Millikan's oil droplet experiment

(Lafarge, Pothier, Bouchiat, Esteve, Devoret)

"small" cavities

planar dot

planar double-dot

vertical dot

... planar multi-dot

few electron quantum dots

TEM by Andreas Kadavanith. Transmission electron microscopy shows the crystalline arrangement of atoms in a 5 nm CdSe Qdot particle.

A family of Qdot particles can be made to emit a full spectrum of colors when excited with a single excitation source.

GaAs vertical

GaAs lateral

self assembled

metallic SET

levitating magnet

high Tc _____ superconductor

transition to zero resistance

Meissner effect (ideal diamagnetism)

 $\psi = A \exp(i\theta)$

Best known **macroscopic quantum system**: both A and θ are collective ,,classical" variables

spherical wave

interference of 2 spherical wave Young's double slit experiment

(Moellenstedt, Tonamura)

H. Rauch

4.5 Intereference Aharonov-Bohm effect

which path interferometer

 $\psi = \frac{1}{\sqrt{2}} (|left\rangle \otimes |O_l\rangle + |right\rangle \otimes |O_r\rangle)$ if $\langle O_r ||O_l\rangle = 0 \implies$ no interference but we know which path the skier took

(Heiblum, Yacoby, Schuster et al. Weizmann)

4.5 Mach-Zehnder Interferometer

4.6 Noise

- A photonmultiplier makes click if a photon is absorbed.
- Such detectors are not yet available for charge transport in electronics!
- Still, the granularity of the measurement process, caused by the quantization of charge in units of e, can still be probed.

4.7 Quantum computing

4.7 Quantum computing

classical bit b:

 $b \in \{0,1\}$

b is **either** 0 **or** 1

quantum bit (qubit) *q*: $q = a |0\rangle + b |1\rangle$

q is a coherent superposition of 0 and 1

qubit:

qubit is a 2-level system

 $H = E_0 |0\rangle \langle 0| + E_1 |1\rangle \langle 1| + \frac{E_c}{2} \{ 0\rangle \langle 1| + |1\rangle \langle 0| \}$ *coupling* E_c

E.g. prepare state(s)

 $\left|0\right\rangle \Longrightarrow a\left|0\right\rangle + b\left|1\right\rangle$

through **control of interaction** (without loss of coherence..!)

different realizations qubits =

> charge qubit flux qubit phase qubit spin qubit trapped ions photon qubit

4.7 Quantum computing

Coherent control of macroscopic quantum states in a single-Cooper-pair box

Y. Nakamura*, Yu. A. Pashkin† & J. S. Tsai*

а

Quantum Transport FS 2015 / books

books:

- Transport in Nanostructures,
 M. J. Kelly, Clarendon Press, Oxford
- Mesoscopic Physics, Leo Kouwenhoven et al. in Nato ASI Series E, Vol. 345, p 1-44, Kluwer
- Mesoscopic Electronics in Solid State Nanostructures, Thomas Heinzel, Wieley-VCH
- *Electronic Transport in Mesoscopic Systems* S. Datta, Cambridge University Press
- Introduction to Mesoscopic Physics,
 Y. Imry, Oxford University Press
- The Physics of Low Dimensional Systems, J.H. Davies, Cambridge University Press
- The Physics of Nanoelectronics
 Tero T. Heikkilä, Oxford Master Series
- *Quantum Transport: Introduction to Nanoscience* Yuli Nazarov and Yaroslav Blanter, Cambridge

Quantum Transport FS 2015 / books

OXFORD MASTER SERIES IN CONDENSED MATTER PHYSICS

books:

- Transport in Nanostructures,
 M. J. Kelly, Clarendon Press, Oxford
- Mesoscopic Physics, Leo Kouwenhover Nato ASI Series E, Vol. 345, p 1-44, Klu
- Mesoscopic Electronics in Solid State N Thomas Heinzel, Wieley-VCH
- Electronic Transport in Mesoscopic Systems
 S. Datta, Cambridge University Press
- Introduction to Mesoscopic Physics,
 Y. Imry, Oxford University Press
- The Physics of Low Dimensional Syster J.H. Davies, Cambridge University Pres
- The Physics of Nanoelectronics
 Tero T. Heikkilä, Oxford Master Series
- Quantum Transport: Introduction to Nan Yuli Nazarov and Yaroslav Blanter, Cam

The Physics of Nanoelectronics

Transport and Fluctuation Phenomena at Low Temperatures

Tero T. Heikkilä

OXFORD

Basics and 1. exercises

all below you need to know. Repetition on Thursday, but you must prepare yourselves by studying the notes provided, i.e. *1.background_knowledge.pdf*

- Ohm's law, Kirchhof's laws
- Fermi gas, Fermi parameters like E_F , λ_F , k_F , T_F ...
- band structure (metal and semiconductor, band gap)
- effective mass approximation
- density of states, DOS, $\rho(E_F)$, N(E_F), chemical potential, electrochemical potential
- Schrödinger equation with confining potential in different dimensions
- density of states of Fermi gas in different dimensions
- capacitance spectroscopy (R. Ashoori 1993)
- thermodynamics, Fermi-Dirac and Bose-Einstein distribution
- generalized electron distribution function \rightarrow week 2

homework 2: read "Quantum Transport in Nano-Structured Semiconductors" by B. Kramer 1.Quantum_Transport_Intro_B.Kramer.pdf

• how to calculate a current (I do in the class right now !)