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Energy Distribution Function of Quasiparticles in Mesoscopic Wires
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We have measured with a tunnel probe the energy distribution function of Landau quasiparticles
in metallic diffusive wires connected to two reservoir electrodes, with an applied bias voltage. The
distribution function in the middle of a 1.5-mm-long wire resembles the half sum of the Fermi
distributions of the reservoirs. The distribution functions in 5-mm-long wires are more rounded, due to
interactions between quasiparticles during the longer diffusion time across the wire. From the scaling
of the data with the bias voltage, we find that the scattering rate between two quasiparticles varies as
´22, where´ is the energy transferred. [S0031-9007(97)04367-6]

PACS numbers: 73.23.–b, 71.10.Ay, 72.10.–d
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The present understanding of metals is based on La
dau’s theory of Fermi liquids. In this model, the elemen
tary excitations of the fluid of interacting electrons ar
nearly independent fermionic quasiparticles [1]. In dis
ordered metals, residual interactions between quasipa
cles lead in mesoscopic samples to measurable correcti
to the density of states, and limit the phase coherence
quasiparticles [2]. These effects have been widely inves
gated experimentally and theoretically in the last 20 yea
[3]. However, the most elementary manifestation of inte
actions, namely, the transfer of energy between quasip
ticles, has been observed only at energies of order 1 eV
time-resolved spectroscopy of a metallic film following a
laser pulse [4], and in the meV range through the esta
lishment of an electron temperature in the so-called ho
electron regime [5]. Indications as to the speed at whi
this thermalization proceeds were obtained in recent sh
noise experiments [6].

In this Letter, we report a direct measurement of th
energy transfer rates between quasiparticles in diffusi
metallic wires. We have measured the energy distributi
function of quasiparticles in wires in a stationary out-of
equilibrium situation, at low enough temperature so th
quasiparticle-quasiparticle interaction is the dominant i
elastic process. The deviations of the energy distributi
function from the Fermi distribution give access to the en
ergy transfer rates. We force the wire out of equilibrium
by placing it between two reservoir electrodes [7] biase
at different potentials, 0 andU, as shown in Fig. 1. The
local distribution function is probed with a superconduc
ing electrode connected to the wire by a tunnel junctio
The experiment exploits the property of the distributio
function to have different shapes depending on the amou
of inelastic collisions a quasiparticle experiences durin
its diffusion time through the wire.

The steady-state distribution functionfsx, Ed in a
metallic wire of lengthL, which depends on the position
X ­ xL measured from the right electrode, and on th
energyE, results from the combined action of the elasti
diffusion and of interactions. It obeys the Boltzman
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equation [8,9]

1
tD

≠2fsx, Ed
≠x2 1 Icollsx, E, h fjd ­ 0 . (1)

HeretD ­ L2yD is the diffusion time through the wire,
andIcollsx, E, h fjd is the collision integral due to the in-
elastic scattering processes. In the absence of electr
phonon scattering,Icollsx, E, h fjd is due to interactions
between quasiparticles only. The boundary condition
are imposed by the reservoir electrodes:fs0, Ed ­ f1 1

exps E
kBT dg21 and fs1, Ed ­ f1 1 exph E1eU

kBT dg21. If no
scattering between quasiparticles occurs during the diff
sion time, the distribution function is the solutionf0sx, Ed
of Eq. (1) with no collision integral [8]:

f0sx, Ed ­ s1 2 xdfs0, Ed 1 xfs1, Ed . (2)

The function f0sx, Ed has a well-defined intermediate
step for jeUj ¿ kBT , as shown in Fig. 1 as solid lines.

FIG. 1. Experimental layout: a metallic wire of lengthL is
connected at its ends to reservoir electrodes, biased at potent
0 andU. In the absence of interaction, the distribution function
at a distanceX ­ xL from the grounded electrode has an
intermediate stepfsEd ­ 1 2 x for energies between2eU and
0 (solid curves) (we assumeU . 0). When interactions are
strong enough to thermalize electrons, the distribution functio
is a Fermi function, with a space-dependent temperature a
electrochemical potential (dotted curves). In the experimen
the distribution function is obtained from the differential
conductancedIydV sV d of the tunnel junction formed by the
wire and a superconducting electrode placed underneath.
© 1997 The American Physical Society
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If, on the contrary, many inelastic collisions occur dur
ing the diffusion time, quasiparticles reach local therma
equilibrium. In this hot-electron regime, the distribution
function is a Fermi function with electrochemical poten
tial msxd ­ 2eUx and effective temperatureTeffsxd ­p

T2 1 xs1 2 xdU2yL, whereL ­
p2

3 s kB

e d2 is the Lorenz
number [6,9] (see dotted lines in Fig. 1). In intermediat
situations, the shape of the distribution function depend
on the collision integralIcollsx, E, h fjd, thereby giving in-
formation on how quasiparticles interact [10].

The distribution functionfsEd ; fsxJ , Ed at the posi-
tion xJ of the tunnel junction is related to the differential
conductance of the junction through

dI
dV

sV d ­
1

RT

Z
dE

≠nS

≠E
sE 2 eV d

3 h fsEd 1 QsE 2 eV d 2 1j , (3)

whereRT is the tunnel resistance of the junction,nSsEd ­
ResEy

p
E2 2 D2 d is the normalized BCS density of

states withD the energy gap of the superconducting elec
trode, andQsEd is the Heaviside function. Equation (3) is
written in the limitkBT ø D. Effects of the electromag-
netic environment [11] and the modification of the densit
of states due to interactions [12] have been neglected. T
distribution functionfsEd is obtained from the deconvo-
lution of the measureddIydV sV d using Eq. (3) [13].

All samples were fabricated by depositions at sev
eral angles through a germanium mask patterned wi
e-beam lithography [14]. The wires, made of copper
are 110 nm wide and 45 nm thick. Wire 1 and wire 2
were deposited simultaneously, and have lengths 1.5 a
5 mm, respectively. Wire 3, fabricated separately, is als
5 mm long. The electrodes at the ends of the wires a
500-nm-thick copper pads with an area of about1 mm2,
thereby implementing adequate reservoirs. The film form
ing the wires forms the bottom layer of the pads, whic
were thickened in a subsequent evaporation [10]. Th
superconducting probes, made of aluminum, were pos
tioned in the middle of each wire. An additional su-
perconducting probe was positioned 1.1mm away from
the right end of wire 3. The areas of the tunnel junc
tions are300 3 110 nm2 in wires 1 and 2, and less than
50 3 50 nm2 in wire 3. The samples were mounted in
a copper box thermally anchored to the mixing cham
ber of a dilution refrigerator. Electrical connections were
made through filtered coaxial lines [15], and measure
ments were carried out at a temperature of 25 mK. Fro
the low-temperature resistances of wire 1 and 2, 14.5 a
53 V, we estimate the diffusion constant in the wires
D , 65 cm2ys (610 cm2ys, given the uncertainties on
the geometry) and the diffusion timestD , 0.35 ns and
tD , 4 ns. Wire 3 is more resistive,R ­ 76 V, yield-
ing D , 45 cm2ys andtD , 6 ns.

The distribution functions in the center of wire 1 for
U ­ 0, 0.1, and 0.2 mV are shown in the top left pane
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of Fig. 2. They are obtained from the deconvolution
of dIydV sV d curves such as the one shown in the in
set, which is taken atU ­ 0.2 mV. The parameters for
the deconvolution of thedIydV sV d curves were obtained
from a fit of Eq. (3) to the measureddIydV sV d at U ­ 0,
with fsEd a Fermi function. From the fit we find the
value of the gap of our aluminumD ­ 0.20 meV, close
to the bulk value, the tunnel resistanceRT ­ 10 kV, and
the temperature of the Fermi functionT ­ 30 mK. This
latter value is in reasonable agreement with the mea
sured temperatureT ­ 25 mK. For U fi 0, the func-
tions fsEd resemble the staircase shape expected fro
Eq. (2). For comparison, we have plotted as a dotted lin
in Fig. 2 the predicted noninteracting quasiparticle distri
bution for U ­ 0.2 mV. Deviations from the prediction
of Eq. (2) are much more apparent in the data from wir
2 sL ­ 5 mmd, shown in the top right panel of Fig. 2 for
the same values ofU. As could be expected from the
diffusion time through this wire which is more than 10
times greater than through wire 1, the distribution func
tions are more rounded. An almost complete thermaliza
tion of the quasiparticles occurs in wire 3, as shown b
the distribution functions plotted in the bottom left pane

FIG. 2. Inset of the top left panel: MeasureddIydV sV d of
the tunnel junction to wire 1 forU ­ 0.2 mV. In the four
panels, distribution functions, obtained from the deconvolution
of such dIydV sV d curves, for U ­ 0, 0.1, and 0.2 mV in
the middle of a 1.5-mm-long wire with a diffusion constant
D , 65 cm2ys (wire 1, top left); in the middle of a 5-mm-
long wire with the same diffusion constant (wire 2, top right);
in the middle (bottom left) and at 1.1mm from the grounded
reservoir electrode (bottom right) of a 5-mm-long wire (wire 3)
with D , 45 cm2ys. Also plotted as a dotted line in the top
left panel is the prediction for the noninteracting distribution
function [Eq. (2)] for U ­ 0.2 mV. All measurements were
performed at 25 mK. The cross-sectional area of the thre
wires is nominally the same:45 3 110 nm2. The tunnel
resistances of the junctions wereRT ­ 10 kV for wires 1
and 2,RT ­ 200 kV for the middle junction on wire 3, and
RT ­ 75 kV for the side junction on wire 3.
3491
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of Fig. 2. The curves of this latter panel can be fitte
with a Fermi function at a temperature 5% higher tha
the effective temperature corresponding to the voltagesU
applied, given byTeff ­

p
T 2 1 U2y4L. These distribu-

tions show that phonon emission, which would tend
cool the electrons belowTeff, can indeed be neglected
The fact that the observed temperatures are 5% high
than the calculatedTeff is consistent with an incomplete
thermalization, as better seen from the distribution fun
tions measured with the junction positioned1.1 mm away
from the grounded reservoir, shown in the bottom righ
panel of Fig. 2. The kink in these curves at zero ener
reflects the sharp discontinuity at zero energy of the Fer
distribution of the nearby reservoir, which has not bee
washed out by interactions at this distance.

A striking scaling property of the data is shown in
Fig. 3 where the distribution functions, measured fo
voltages increasing fromU ­ 0.05 mV to U ­ 0.3 mV
by steps of0.05 mV, are plotted as a function of the
reduced parameterEyeU. Except for the smallest voltage
U ­ 0.05 mV, all the curves measured at a given positio
coincide. This property leads to a phenomenologic
expression for the collision integral in Eq. (1), as w
now show.

The collision termIcollsx, E, h fjd in the Boltzmann
equation is the difference of two terms: an in-collisio
term, the rate at which particles are scattered in the st
of energyE, and an out-collision term:

FIG. 3. Continuous lines in all four panels: distribution
functions, for U ranging from 0.05 to 0.3 mV by steps of
0.05 mV, plotted as a function of the reduced energyEyeU,
for the same positions as in Fig. 2. Open symbols are best
of the data to the solution of the Boltzmann equation with a
interaction kernelKsx, x0, ´d ­ t

21
0 dsx 2 x0dy´2: in top panel,

open circles correspond to the calculated distribution function
the middle of wires 1 and 2sx ­ 0.5d, with t0ytD ­ 2.5 and
t0ytD ­ 0.3, respectively (both compatible witht0 , 1 ns).
In bottom panels, open diamonds are computed atx ­ 0.5 and
x ­ 0.25 with t0ytD ­ 0.08 (t0 , 0.5 ns).
3492
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Icollsx, E, h fjd ­ I in
collsx, E, h fjd 2 I out

collsx, E, h fjd

(4)

with

I
in,out
coll sx, E, h fjd ­

Z
d´ dE0 dx0 Ksx, x0, ´dfx

E1´,E

3 s1 2 fx
E,E2´dfx0

E0 s1 2 fx0

E01´d ,

(5)

where the shorthandfx
E stands forfsx, Ed. Following

the Landau approach [1], we have assumed that th
dominant process is a two-quasiparticle interaction. Th
kernel functionKsx, x0, ´d is proportional to the squared
matrix element of the interaction during which an energy
´ is transferred between two particles at positionsx
and x0. We assume thatKsx, x0, ´d depends only on
´ since E . EF , E0 . EF, and ´ ø EF. The energy
dependence ofKsx, x0, ´d is inferred from the scaling
property of the data, assuming that the scaling observe
at the middle of all three wires and at the side position o
wire 3 persists everywhere along each wire. Then, give
that the steady-state distributions as well as the bounda
conditions all depend onEyeU only (if kBT ø eU), the
collision integral must have the same property. Equa
tion (5) then implies thatU2Ksx, x0, ´d is a function of
´yeU only, yielding Ksx, x0, ´d ­ gsx, x0dy´2, where
gsx, x0d is a function of space variables. When fitting
the solution of Eq. (1), computed foreU ¿ kBT , to
the experimental curves, we found that the shape of th
simulated distribution functions is practically insensitive
to the spatial extent ofgsx, x0d: taking a delta func-
tion or a constant produces the same shapes. In t
following, we assume that the interaction is local, and
gsx, x0d ; t

21
0 dsx 2 x0d where t

21
0 has the dimension

of a rate. The shape of the distribution function is then
determined by the ratiot0ytD only. The fits yield
t0ytD ­ 2.5 6 0.2 for wire 1, t0ytD ­ 0.3 6 0.05 for
wire 2, andt0ytD ­ 0.08 6 0.02 for the lateral position
on wire 3. The calculated distribution functions, plotted
with open symbols in Fig. 3, account well for the mea-
surements. We have taken for the middle position of wir
3 the same valuet0ytD as for the side position, and find
excellent agreement with the data. Given the additiona
uncertainties on the diffusion times, these results ar
compatible with an identical valuet0 , 1 ns for wire 1
and wire 2, whereas we gett0 , 0.5 ns for wire 3. This
is consistent with the assumption that the interaction i
local, and that its strength does not depend on the leng
of the wire. The fact that the scaledU ­ 0.05 mV curves
do not coincide with the other scaled curves is explaine
by the rounding effect of the reservoir temperature, whic
is relatively more important at lowerU [16].

In order to test the robustness of our determination o
Ksx, x0, ´d, we have tried to fit our data with a different
power law forKsx, x0, ´d. We have found that exponents
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of ´ differing from 22 by more than 0.1 are incompatibl
with the scaling displayed by the data. In addition, w
have found that the distribution function is practical
insensitive to the interaction law beloweUy4. The data
presented here therefore imposeKsx, x0, ´d ~ 1y´260.1 in
the energy rangesE0, 0.30 meVd with E0 # 0.01 meV.

This energy dependence differs from the predicti
Ksx, x0, ´d ~ ´23y2 of the direct calculation of the screene
Coulomb interaction between quasiparticles in a homo
neous diffusive medium in the 1D regime [3]. Howeve
the 1y´2 dependence can be obtained from another ca
lation in which the quasiparticle interactions are treated
considering the coupling between a quasiparticle and
fluctuating electromagnetic field produced by all the othe
This point of view was already successfully used to calc
late the dephasing time of a given quasiparticle when
others are in thermal equilibrium [3,17]. In a generaliz
tion of this reasoning, we treat the energy transfer betw
quasiparticles with an arbitrary distribution function, an
consider the fluctuations of the electromagnetic field at
scale of the elastic mean free path [18].

Finally, let us mention that our resultKsx, x0, ´d ­
t

21
0 dsx 2 x0dy´2 in the experimental energy window

sE0, 0.30 meVd implies an upper bound for the quas
particle lifetime. ForE within this energy range, we
obtain tsEd , t0y lnsEyE0d, wheret0 , 1 ns. At E ­
0.1 meV, this upper bound is 2 orders of magnitu
shorter than the quasiparticle lifetime predicted in diffu
sive 1D metals [3] with the same diffusion constants
in our samples. Further experiments are needed to cla
this issue.
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