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Energy Distribution Function of Quasiparticles in Mesoscopic Wires
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We have measured with a tunnel probe the energy distribution function of Landau quasiparticles
in metallic diffusive wires connected to two reservoir electrodes, with an applied bias voltage. The
distribution function in the middle of a 1.mm-long wire resembles the half sum of the Fermi
distributions of the reservoirs. The distribution functions imBy-long wires are more rounded, due to
interactions between quasiparticles during the longer diffusion time across the wire. From the scaling
of the data with the bias voltage, we find that the scattering rate between two guasiparticles varies as
£72, wheree is the energy transferred. [S0031-9007(97)04367-6]

PACS numbers: 73.23.—b, 71.10.Ay, 72.10.-d

The present understanding of metals is based on Larequation [8,9]
dau’s theory of Fermi liquids. In this model, the elemen- 5
tary excitations of the fluid of interacting electrons are 1 o fxE)
nearly independent fermionic quasiparticles [1]. In dis- o  0x?
ordered metals, residual interactions between quasipart’i{ge 9 I e .
cles lead in mesoscopic samples to measurable correctioh§'® 7> = L*/D is the diffusion time through the wire,

to the density of states, and limit the phase coherence @"d Leon(x, E,{ f}) is the collision integral due to the in-
quasiparticles [2]. These effects have been Widelyinvesti(—EI""StIC scattering processes. In_the abse’?ce of glectron-
honon scatteringJ.o11(x, E,{ f}) is due to interactions

gated experimentally and theoretically in the last 20 year .9t s

[3]. However, the most elementary manifestation of inter-P€IWeen quasiparticles only. The boundary conditions
actions, namely, the transfer of energy between quasipaf‘"—re ano:s?d by the reservoir electr%Qfgj, 9 = [+
ticles, has been observed only at energies of order 1 eV B§¥Pz7)]" and f(1,E) =[1 + exp{=7)]"". If no
time-resolved spectroscopy of a metallic film following a Scattering between quasiparticles occurs during the diffu-
laser pulse [4], and in the meV range through the estalion time, the distribution function is the solutigp(x, E)

lishment of an electron temperature in the so-called hotOf EQ- (1) with no collision integral [8]:

+ ICOll(x’E’{f}) =0. (1)

electron regime [5]. Indications as to the speed at which E) = (1 — 0.E) + 1L E 2
this thermalization proceeds were obtained in recent shot fobx, E) = (1 = x)f(0.E) + xf(L E). @
noise experiments [6]. The function fo(x,E) has a well-defined intermediate

In this Letter, we report a direct measurement of thestep for|eU| > kT, as shown in Fig. 1 as solid lines.
energy transfer rates between quasiparticles in diffusive
metallic wires. We have measured the energy distribution ©®
function of quasiparticles in wires in a stationary out-of-
equilibrium situation, at low enough temperature so that
quasiparticle-quasiparticle interaction is the dominant in-
elastic process. The deviations of the energy distribution
function from the Fermi distribution give access to the en-
ergy transfer rates. We force the wire out of equilibrium
by placing it between two reservoir electrodes [7] biased
at different potentials, 0 anfl, as shown in Fig. 1. The
local distribution function is probed with a superconduct-
ing electrode connected to the wire by a tunnel junctionFIG. 1. Experimental layout: a metallic wire of lengthis
The experiment exploits the property of the distributionconneCted at its ends to reservoir e_Iectrodes_, bl_ase_d at pote_ntlals
function to have different shanes depending on the amou 0 andU. In the absence of interaction, the distribution function

) - - - p ) p 9_ - rétt a distanceX = xL from the grounded electrode has an
of inelastic collisions a quasiparticle experiences duringntermediate ste(E) = 1 — x for energies betwees U and
its diffusion time through the wire. 0 (solid curves) (we assumé& > 0). When interactions are

The steady-state distribution functiofi(x, E) in a  Strong enough to thermalize electrons, the distribution function
metallic wire of lengthZ, which depends on the position IS & Fermi function, with a space-dependent temperature and
X = xL measured from the right electrode, and on theﬁ:eCtquh-em'-Cal potential (dotted curves). In the experiment,

e distribution function is obtained from the differential

energyE, results from the combined action of the elasticconductancei’/av (V) of the tunnel junction formed by the
diffusion and of interactions. It obeys the Boltzmannwire and a superconducting electrode placed underneath.
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If, on the contrary, many inelastic collisions occur dur-of Fig. 2. They are obtained from the deconvolution
ing the diffusion time, quasiparticles reach local thermalof dI/dV (V) curves such as the one shown in the in-
equilibrium. In this hot-electron regime, the distribution set, which is taken a/’ = 0.2 mV. The parameters for
function is a Fermi function with electrochemical poten-the deconvolution of thel/dV (V) curves were obtained
tial u(x) = —eUx and effective temperatur&.(x) =  from a fit of Eq. (3) to the measuretd /dV (V) atU = 0,
JT? + x(1 — x)UZ/L, whereQ = ”Tz(’%ﬂ)z is the Lorenz With f(E) a Fermi function. From the fit we find the
number [6,9] (see dotted lines in Fig. 1). In intermediatevalue of the gap of our aluminum = 0.20 meV, close
situations, the shape of the distribution function depend#0 the bulk value, the tunnel resistanke = 10 k2, and
on the collision integral.i(x, E, { f}), thereby giving in-  the temperature of the Fermi functidgh= 30 mK. This
formation on how quasiparticles interact [10]. latter value is in reasonable agreement with the mea-
The distribution functionf(E) = f(x;, E) at the posi- sured temperaturd = 25 mK. For U # 0, the func-
tion x, of the tunnel junction is related to the differential tions f(E) resemble the staircase shape expected from

conductance of the junction through Eq. (2). For comparison, we have plotted as a dotted line
in Fig. 2 the predicted noninteracting quasiparticle distri-

ar V) = 1 f dE dns (E — eV) bution for U = 0.2 mV. Deviations from the prediction
dv Rt oE of Eq. (2) are much more apparent in the data from wire

X {f(E) + O — eV) — 1},  (3) 2 (L = 5 um), shown in the top right panel of Fig. 2 for
the same values off. As could be expected from the
whereR7 is the tunnel resistance of the junction,(E) = diffusion time through this wire which is more than 10
Re(E/VE? — A?) is the normalized BCS density of times greater than through wire 1, the distribution func-
states withA the energy gap of the superconducting elections are more rounded. An almost complete thermaliza-
trode, andd (E) is the Heaviside function. Equation (3) is tion of the quasiparticles occurs in wire 3, as shown by
written in the limitkzT < A. Effects of the electromag- the distribution functions plotted in the bottom left panel
netic environment [11] and the modification of the density
of states due to interactions [12] have been neglected. The
distribution functionf(E) is obtained from the deconvo- wire 1, middle wire 2, middle
lution of the measured! /dV (V) using Eq. (3) [13]. ! _\
All samples were fabricated by depositions at sev- ‘
eral angles through a germanium mask patterned Witrp(E)
e-beam lithography [14]. The wires, made of copper,
are 110 nm wide and 45 nm thick. Wire 1 and wire 2
were deposited simultaneously, and have lengths 1.5 and
5 um, respectively. Wire 3, fabricated separately, is also
5 um long. The electrodes at the ends of the wires are

didV (mS)
ooo
o =N

500-nm-thick copper pads with an area of abbuhn?, \ wire 3

thereby implementing adequate reservoirs. The film form- L5 um

ing the wires forms the bottom layer of the pads, whichf(E) [ midde Dds cmle

were thickened in a subsequent evaporation [10]. The

superconducting probes, made of aluminum, were posi- ol S

tioned in the middle of each wire. An additional su- 03 02 01 00 041 03 02 01 00 0f
perconducting probe was positioned Jin away from E (meV) E (meV)

the right end of wire 3. The areas of the tunnel junc-
tions are300 X 110 nn? in wires 1 and 2, and less than F!G- 2. Inset of the top left panel: Measured/dV (V) of
50 X 50 n? in wire 3. The samples were mounted in the tunnel junction to wire 1 fot/ = 02 mv. In the four
o panels, distribution functions, obtained from the deconvolution
a copper box thermally anchored to the mixing cham-f such d1/dv (V) curves, forU = 0, 0.1, and 0.2 mV in
ber of a dilution refrigerator. Electrical connections werethe middle of a 1.5um-long wire with a diffusion constant
made through filtered coaxial lines [15], and measureD ~ 65 cn?/s (wire 1, top left); in the middle of a pm-
ments were carried out at a temperature of 25 mK. FroniPnd wire with the same diffusion constant (wire 2, top right);
the low-temperature resistances of wire 1 and 2, 14.5 an:(i the middle (bottom left) and at 1.4m from the grounded
pe . ; Lo T servoir electrode (bottom right) of a/om-long wire (wire 3)
53 Q, we estimate the diffusion constant in the wireswith p ~ 45 cn?/s. Also plotted as a dotted line in the top
D ~ 65 cn?/s (+10 cn?/s, given the uncertainties on left panel is the prediction for the noninteracting distribution

the geometry) and the diffusion timeg ~ 0.35 ns and function [Eq. (2)] for U = 0.2 mV. All measurements were
7p ~ 4 ns. Wire 3 is more resistive} = 76 Q, yield- performed at 25 mK. The cross-sectlonrz;l]l2 area of the three
ing D ~ 45 cn?/s andrp, ~ 6 ns wires is nominally the same45 X 110 nnv. The tunnel
Ing B D o . resistances of the junctions wemr = 10 kQ) for wires 1
The distribution functions in the center of wire 1 for and 2, g, = 200 kQ for the middle junction on wire 3, and

U =0, 0.1, and 0.2 mV are shown in the top left panelR; = 75 kQ for the side junction on wire 3.
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of Fig. 2. The curves of this latter panel can be fitted I.on(x, E,{f}) = ID,(x, E,{f}) — I (x, E.{f})
with a Fermi function at a temperature 5% higher than @)
the effective temperature corresponding to the voltdges
applied, given byl.;s = /T2 + U%/4%¢. These distribu-  with
tions show that phonon emission, which would tend to .
cool the electrons below,, can indeed be neglected. Jeoil (4 E{f}) = f de dE"dx'K(x,x',&)fE ok
The fact that the observed temperatures are 5% higher . .
than the calculated.s; is consistent with an incomplete X (1= fep-e)fB(l = fEie)s
thermalization, as better seen from the distribution func- (5)
tions measured with the junction positioned wm away
from the grounded reservoir, shown in the bottom rightwhere the shorthandz stands forf(x,E). Following
panel of Fig. 2. The kink in these curves at zero energyhe Landau approach [1], we have assumed that the
reflects the sharp discontinuity at zero energy of the Fermilominant process is a two-quasiparticle interaction. The
distribution of the nearby reservoir, which has not beerkernel functionk (x, x’, &) is proportional to the squared
washed out by interactions at this distance. matrix element of the interaction during which an energy

A striking scaling property of the data is shown in ¢ is transferred between two particles at positions
Fig. 3 where the distribution functions, measured forand x’. We assume thaK(x,x’, ) depends only on
voltages increasing frony = 0.05 mV to U =03 mV & sinceE = Ep, E' = Ep, ande < Er. The energy
by steps of0.05 mV, are plotted as a function of the dependence o (x,x’,¢) is inferred from the scaling
reduced parametdt/eU. Except for the smallest voltage property of the data, assuming that the scaling observed
U = 0.05 mV, all the curves measured at a given positionat the middle of all three wires and at the side position of
coincide. This property leads to a phenomenologicalvire 3 persists everywhere along each wire. Then, given
expression for the collision integral in Eq. (1), as wethat the steady-state distributions as well as the boundary
now show. conditions all depend ot /eU only (if k3T < eU), the

The collision term I, (x, E,{f}) in the Boltzmann collision integral must have the same property. Equa-
equation is the difference of two terms: an in-collisiontion (5) then implies that/?K (x, x/, €) is a function of
term, the rate at which particles are scattered in the state/eU only, yielding K(x,x’,e) = g(x,x’)/&%, where
of energyE, and an out-collision term: g(x,x") is a function of space variables. When fitting

the solution of Eg. (1), computed foeU > kgT, to
the experimental curves, we found that the shape of the

wire 2, middle simulated distribution functions is practically insensitive
to the spatial extent ofg(x,x’): taking a delta func-
tion or a constant produces the same shapes. In the
following, we assume that the interaction is local, and
g, x") = 75 '8(x — x') where 7, ' has the dimension
of a rate. The shape of the distribution function is then

wire 1, middle

t  L=1.5um, D=65 cm’/s

% L=5um, D=65 cm’/s

ol . . determined by the ratior/7p only. The fits yield
1 fooes T0/Tp = 2.5 * 0.2 for wire 1, 7o/7p = 0.3 * 0.05 for
%\\ wire 2, andro/7p = 0.08 = 0.02 for the lateral position
wire 3 , on wire 3. The calculated distribution functions, plotted
f(E) L5 um, Dot el side with open symbols in Fig. 3, account well for the mea-

surements. We have taken for the middle position of wire
3 the same value,/rp as for the side position, and find
ob, . . i excellent agreement with the data. Given the additional
-2 -1 0 1 -2 -1 0 1 uncertainties on the diffusion times, these results are
E/eU E/eU compatible with an identical valuey ~ 1 ns for wire 1
. . . ... and wire 2, whereas we ge§ ~ 0.5 ns for wire 3. This
Er?éti%ns,C?or]rtllgu?:r?gigge?rom ;I(I)Sfc:gr O%anme\lls'byd'ztgggt'gp is consistent with the assumption that the interaction is
0.05 mV, plotted as a function of the reduced enegyer,  local, and that its strength does not depend on the length
for the same positions as in Fig. 2. Open symbols are best fitef the wire. The fact that the scaléd = 0.05 mV curves
of the data to the solution of the Boltzmann equation with ando not coincide with the other scaled curves is explained
interaction kerneK (x,x', &) = 7, '8(x — x)/=*: in top panel, by the rounding effect of the reservoir temperature, which
open circles correspond to the calculated distribution function ing relatively more important at lowey [16].

the middle of wires 1 and 2 = 0.5), with 7o/7p = 2.5 and .
70/ = 0.3, respectively (both compatible with, ~ 1 ns). In o/rder to test the .robustn_ess of our d_eterm|r_1at|on of
In bottom panels, open diamonds are computed at0.5 and K (x,x’, &), we have tried to fit our data with a different

x = 0.25 with 7¢/7p = 0.08 (79 ~ 0.5 ns). power law forK (x, x’, ). We have found that exponents
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