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Aharonov – Bohm effect



Aharonov – Bohm effect

B = 0 everywhere, except
inside solenoid of radius R

A : vector potential

 :  magnetic flux (surface SC)

Stokes theorem

 : polar unit vector (counterclockwise)
r > R  :  distance from solenoid center
(exercise: show this is correct)

^



topology

integral depends only on points A and B, not the path chosen

simply connected region: path surrounding it can be continuously
deformed to a point without changing value of integral.

if flux is inside region, the integral depends on whether or not the 
flux region is enclosed (not simply connected). 



topology (2)



vector potential: phase factor 

time dep. Schrödinger eq.
A ≠ 0, but B = 0
scalar potential  = 0

0 = solution with A = 0
g(r)  :  phase factor

independent of path
where B = 0
r0 : arbitrary origin

(exercise: demonstrate that this is correct (plugging into SE) )



Aharonov – Bohm effect

interference

B = 0 everywhere, except
inside solenoid of radius R

phase difference  = 
lower - upper

oscillating term

quantum interference
0 = h/e = 4.12 mT m2



Aharonov – Bohm effect: significance (1)

1. AB effect demonstrates that the potentials A and  are physical quantities

Maxwell’s equations introduce potentials A and 
such that(1)

(2)

(3)

(4)

(5)

• automatically fulfills 
eq. 2 and 3

• easier to work with
• no physical significance



potentials: classical gauge invariance

potentials not uniquely defined

give the same E and B fields (show this)
Maxwell’s equation are gauge invariant.

gauge transformation
 : gauge field

thus, in Maxwells (classical) theory, the potentials are a purely 
mathematical construct without any physical significance.



Aharonov – Bohm effect : significance (2)

1. AB effect demonstrates that the potentials A and  are physical quantities

in quantum interference, the vector potential appears, even when
B = 0 everywhere along trajectories

2. AB quantum inferference effect oscillating with magnetic flux

also true when trajectories are in field B ≠ 0
(a common source of quantum interference effects)

3. similar arguments can also be 
made for the scalar potential 
(using time dependent potentials, 
see e.g. original AB paper)



Aharonov – Bohm effect : some historical remarks

Aharonov: PhD student of Bohm (Bristol)

• paper published (Physical Review) in 1959.

• shortly after, they learned that Ehrenberg and Siday 
published equivalent results in 1949, 10 years before 
W. Ehrenberg R. E. Siday, Proc. Phys. Soc. B62, 8 (1949)

• consequently, Bohm referred to it as the ESAB effect

• this did not stick, and now carries the name AB effect

• paper has over 3’000 citations !!

first experiment:
1960!!



AB effect : Chambers experiment: electron beam

Phys. Rev. Lett. 3, 5



AB effect : solid state experiment

sample: Au ring, 
ID 784 nm, width wires 41 nm 
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T = 10 mK



AB effect : solid state experiment (2)

Fourier
transform h/e

h/2e

T = 10 mK



AB effect : solid state experiment (3): temperature

elevated temperatures destroy quantum interference: decoherence



Quantum interference in open GaAs quantum dots

Open Dot

•Vgate set to allow ≥ 2e2/h conductance 
through each point contact

•Dot is well-connected to reservoirs

•Transport measurements exhibit 
conductance fluctuations and  
weak localization

point contacts

many open dot slides: A. Huibers and J. Folk
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(x,y)

Goal: use quantum dot as a probe of quantum phase coherence

2D Cavity with Chaotic
trajectories:

Simulation by R. Akis, 
PRL 79, 123 (1997)

Two-Dimensional Quantum Dot
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Any parameter that changes path accumulated phase

no dephasing

dephasing
of longer paths



Quantum Interference in Open Dots

Interference between all possible trajectories 
gives rise to repeatable random 
intereference fluctuations
as function of dot parameters
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Weak Localization

At B=0, phase-coherent backscattering
results in “weak localization”

Conductance dip at B=0
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constructive interference of coherently 
backscattered, time reversed 
trajectories decreases conductivity
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(assuming spinless electrons)

magnetic field: AB-flux, cut off trajectories of area A>0/B
magnetoconductance

Quantum Correction: Weak Localization



in a given magnetic field B, trajectories enclosing flux 
acquire additional Aharonov-Bohm phase:






eBS2Sd)A(e2

 

when summing over all trajectories, this  will effectively
eliminate trajectories of area A>>0/B.   (=h/e)

*

*

*
*

*

*
flux

Weak Localization in Magnetic Fields



8 m2

g ~ 0.038 e2/h

3 m2

g ~ 0.09 e2/h
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Weak Localization: Measure of Dephasing
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Weak Localization vs T
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Huibers et al., PRL83, 5090 (1999)

Low Temperature Saturation?
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motion  in real space

motion in spin space

spin precession affects phase interference
(2 in spin space gives -1 to phase)

electrons move with the Fermi velocity, electric fields in material appear as 
magnetic fields in the rest frame of the electron

spin-precessions

• depend on magnitude of electron velocity (density dependence)
• couple to the electron spin via Zeeman coupling

these magnetic fields

• heterointerface (Rashba)
• crystalline anisotropy 

in III-V zincblende crystal 
(Dresselhaus)

electric fields due to:

Spin-Orbit Coupling



III-V Semiconductor

Zinkblende crystall structure:
two interpenetrating fcc lattices
with only Ga atoms on one lattice,
only As on the other

absence of inversion symmetry
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symmetry considerations:
G. Dresselhaus, 
Phys. Rev. 100, 580 (1955)
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Spin-Orbit Coupling due to Crystal Anisotropy



electric field at heterointerface
perpendicular to 2D plane
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Rashba term (k-linear)

coupling strength parameters  and  can be determined
from Band structure, for example in k.p approximation

AlGaAs

GaAs

Spin-Orbit Coupling due to Heterointerface



assuming strong spin-orbit coupling,
summing over all trajectories is 
equivalent to averaging R2 over sphere *

*

*
*

*

*

R1

R2

R3

R4

R5

R6

initial state: i

final (forward):

final (backward):

Ri: spin rotations 1RR†  †1 RR 

interference term iRiff 2
fb 

(TRS)

2
1ff bf  destructive interference, opposite sign

manifestation of fermionic nature of electron

Weak Antilocalization

iRiRRRf 12Nf  ...

iRiRRRf 11
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12N RRRR  ...

exercise: show this



T=300mK

dots are on different wafersdots are on different wafers

high density
stronger SO coupling
antilocalization (AL)

WL+AL

 4m

low density
weaker SO coupling
weak localization (WL)

 4m

T=300mK

WL



Spin-Orbit (SO) interaction

• a preeminent effect governing spins in solids

• novel quantum states: helical states, topological insulators, 
Majorana fermions etc

• resource for spin based quantum technologies
spintronics, quantum information

• useful: all electrical spin manipulation
adverse: spin dephasing, relaxation

understanding and control of SO coupling profoundly important



Summary

• Aharonov Bohm effect
potentials are physical quantities observable in quantum interference
oscillations with magnetic field with period 0/A

• weak localization
suppression of conductance at B=0 due to quantum interference
size of effect of order e2/h for full coherence
can be used to extract quantum phase coherence

• weak antilocalization
enhancement of conductance at B=0 (dito, plus strong spin-orbit coupling)
size of order e2/h (half of WL)
can be used to extract SO parameters

• conductance flucuations
quantum interference correction to conductivity 
as a function of a mesoscopic parameter, such as B-field, gate, chem. pot. etc
of order e2/h for fully coherent system
can also be used to extract phase coherence


