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Influence of electron-electron scattering on shot noise in diffusive contacts
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Shot noise in contacts with a small elastic mean free path in the presence of electron-electron
scattering is calculated using the Boltzmann-I angevin approach and the approximation of effective
electron temperature. In the case of strong electron-electron scattering, the ratio between the shot
noise SI and its classical value 2e

~

I
~

increases from s to ~3/4 owing to a broadening band of
partially occupied states. The inQuence of electron-phonon scattering on the shot noise at finite
temperatures is also considered. As this scattering decreases the energy of the electron gas, it
suppresses the shot noise at high voltages and increases the low-voltage boundary of the shot-noise
range at 6nite temperatures. However, the noise-to-current ratio decreases with increasing contact
length more slowly than its reciprocal.

If the electrical current I Bowing through a device con-
sists of random independent pulses, this device exhibits
shot noise with a spectral density SI = 2e~I~. Unlike
equilibrium Nyquist noise, shot noise is not a universal
phenomenon. It is present, e.g. , in vacuum diodes and
tunnel junctions and is absent in macroscopic wires.

Until recently, it was believed that the shot noise van-
ishes if the length of the wire is much larger than the
mean IIree path of the electrons. Recent investigations,
however, showed that in diffusive-conduction wires with
purely elastic scattering, SI = se~I~, i.e. , this noise is 1/3
of the noise of a classical Poisson process.

The question yet to be elucidated is why the shot noise
present in mesoscopic wires vanishes in the macroscopic
limit. There is a general comprehension (see, e.g. , Refs.
1 and 4) that the reason for the shot noise vanishing
in macroscopic wires is inelastic scattering. However, it
was not exactly known which types of inelastic scatter-
ing suppress the shot noise and which do not. To the
best of our knowledge, quantitative results have been ob-
tained for only two particular cases. For the particular
case of zero temperature, it was shown that the sponta-
neous emission of phonons by the electrons decreases the
nonequilibrium noise. In Ref. 4, the result was obtained
that spin-Bip scattering does not affect the shot noise
and it was predicted qualitatively that electron-phonon
scattering should suppress it.

Actual measurements of shot noise in diffusive meso-
scopic contacts have been performed, however, under the
conditions of strong electron-electron scattering. These
measurements revealed certain deviations of the SI/e~I~
ratio &om the predicted value of 2/3 towards both higher
and lower values depending on the experimental condi-
tions. Hence it is of interest to investigate the inBuence
of the electron-electron scattering on the shot noise in
high-impurity-content contacts.

Another related problem is to take into account the
scattering of electrons by thermal phonons. This is im-
portant for refining the conditions under which the shot
noise can be observed.

In this paper, we consider the shot noise in a difFusive
contact in the presence of electron-electron and electron-

phonon scattering. As in Ref. 2, we calculate the Buctu-
ations using the Boltzmann-Langevin equation. This ap-
proach is alternative to the scattering-matrix formalism
used in Refs. 1 and 3. We obtain the result that electron-
electron scattering increases the shot noise rather than
suppresses it because of the increasing number of electron
states that contribute to the noise. In contrast, electron-
phonon scattering contracts the range of electron energies
that contribute to the noise and, therefore, decreases this
noise. The noise, however, decreases with the length of
the wire more slowly than predicted in Refs. 1 and 4 be-
cause the energy relaxation of electrons is a substantially
nonlinear process.

Consider a three-dimensional (3D) metal channel con-
necting two massive banks with its length I much larger
than the elastic mean free path of electrons and the trans-
verse dimensions of the channel. In addition to impurity
scattering, the electrons also experience electron-phonon
and electron-electron scattering. However, the inelastic
scattering is much weaker than the elastic. We also as-
sume that the quasiparticle description of electrons is
valid, i.e., the electron-level broadening resulting &om
the inelastic scattering Le v is much smaller than
the characteristic energy scales at which the electron dis-
tribution function essentially varies. Moreover, we as-
sume that the different scattering processes are indepen-
dent, i.e., interference between the electron-impurity and
electron-electron or electron-phonon scattering is absent.
Hence the electrons are described by the quasiclassical
distribution function f(g7, r, t) scalar which obeys the
traditional Boltzmann equation. In the case of strong
impurity scattering, the distribution function is almost
isotropic in momentum space and, therefore, it may be
considered as a function of the total electron energy

= p /2m + eP(r) —e~. In a quasiclassical electron
gas, Buctuations originate &om the electron-impurity,
electron-phonon, and electron-electron collisions, which.
are random events. In this case, the nonequilibrium
noise may be calculated by the method of Kogan and
Shul'man. In Ref. 2, this method was used for calcu-
lating the spectral density of current Quctuations in a
high-impurity-content mesoscopic contact. In the case
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where impurity scattering alone is present, the spectral
density of current fiuctuations was obtained in the form

4 +L/2 +oo
S = dx de f(e, x) [1 —f(e, x)], (1)

—L/2 —OO

where R is the contact resistance and the x axis is di-
rected along the contact. Following the derivation of (1)
in Ref. 2, one may note that it also remains valid when
impurity scattering coexists with electron-electron or
weak electron-phonon scattering. Taken alone, electron-
electron collisions cannot generate current fiuctuations
at all (provided that the elastic scattering tiine is energy
independent near the Fermi surface) because they do not
change the total momentum of the electron gas. As for
the electron-phonon collisions, their contribution to Huc-
tuations of the electron momentum is small in compari-
son with that of impurity scattering because of their low
intensity.

Both types of inelastic collisions, however, participate
in forming the distribution function f(e, x), which enters
into (1), because they determine the inelastic relaxation.
Inside the contact, the distribution function f (e, x) obeys
the equation

D f (e) x) + I„(e)x) + Ipi, (e) x) = 0) (2)

where D = v+~~,. ~/3 is the diffusion coefficient of elec-
trons,

IEE(E) =
E j E)|E EE ([)—f (E)[f(E + IE) [1 + N(~)['

+[1—f()]f( — )N( )
—f(e)[l —f(e —~)][1+N(~)]
—f (e) [1 —f (e + ~)]N(~)) (4)

where o.~h is the dimensionless parameter of electron-
phonon interaction, 0D is the Debye temperature, and
N(~) is the phonon distribution function. The boundary
conditions for Eq. (2) at the left and the right ends of
the contacts are

+OO +OO

IE.~(e) = ——e~ dE d(d64~p~
x (f(t)f (e —(d) [1 —f (t —(d)] [1 —f (e )]-f(e —~)f(e')[1 —f(e)][1—f(e' —~)lk (3)

and A: is the inverse screening length;

a perturbation. As the zeroth approximation, we use the
solution of the equation 82 f/Bx2 = 0 with the boundary
conditions (5). At zero temperature, this solution takes
the form

0 for e ) eV/2
fo(e) = 1/2 —x/I for eV/2 ) e ) —eV/2

1 for e ( —eV/2.
(6)

In the first approximation in I„, the correction to fo
obeys the equation

f, (+L/2, e) = O. (7)

Upon solving Eq. (7) and substituting f = f0 + fi into
(1), one obtains

(k/p~)( V)'/ »»/L'
It may be easily seen that the collision integral (3) van-
ishes if the distribution function is of the form f
f~(e —eo) with arbitrary eo and temperature T. Hence
it may be assumed that in the case of strong electron-
electron scattering the electron distribution is described
by the local temperature T„which difFers &om the lattice
temperature. Therefore,

f(e, x) = 1+exp
l

(e —eP(x) )

Tex )

where P(x) = (x/L)eV is th—e electrical potential. To
obtain an equation for the efI'ective temperature of the
electrons, multiply Eq. (2) by e and integrate it with
respect to energy &om —oo to +oo. By using the explicit
forin of f (e, x) (9), it may be easily obtained that

+OO 1
deaf(e, x) = T, + —(eP) . —

6 ' 2
(lo)

2 eV lie k (eVL)2SrV =—
3 R 40 320 py De~

Hence the correction to the spectral density of the noise
Rom electron-electron scattering is positive. Note that,
according to Refs. 2 and 4, the similar correction &om
the electron-phonon scattering at T = 0 was negative.

Now, consider the case of strong electron-electron scat-
tering

f(e, L/2) = fJ;(e —e—V/2),
f(e, I/2) = f~(e+ eV/2), (5)

where f~(e) = 1/[1+ exp(e/T)) is the Fermi distribution
function and V is the voltage drop across the contact.

First, consider the case of weak electron-electron scat-
tering when

By introducing the new variable 4 = T, and making use
of the explicit form of P(x), one may easily obtain an
equation for L:

d2b, 6 (eV&
~, l[ L)l

(k/p~)(eV)'/~~ (( D/L'.

In this case, the collision integral I may be treated as

with the boundary condition A(+L/2) = T . In terms
of L, the expression for the spectral density of the noise

(1) takes the form
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+ L

SI= BL

Consider the case where T = 0 and electron-phoo. on
scattering is absent. The solution of (ll) is of the form

Hence

(i4)

(k/pz) («)'/es» ~ph(«)'/0D.

Unlike electron-electron scattering, electron-phonon scat-
tering does not conserve the total energy of the elec-
tron system and may change the effective temperature
of electrons, T . Because the electron distribution is far
&om equilibrium, its relaxation is an essentially nonlin-
ear process and cannot be described by the standard
approximation of the energy-relaxation time r, (T). In
general, describing this relaxation requires solving the ki-
netic equation for electrons with the collision integrals (3)
and (4) combined with the similar equation for phonons.
In turn, this requires specifying the thermal conductivity
of the substrate, the acoustic transmission of the metal-
substrate interface, and other parameters describing the
phonon kinetics. Instead, we assume that the phonon
distribution is equilibrium, i.e.,

N(~) = [exp(~/T) —1] (i5)

where T is the contact temperature corrected for possible
Joule heating. Because the electron-electron scattering
is assumed to be strong, the approximation of local elec-
tron temperature is valid. Substituting the distribution
functions (9) and (15) into Eq. (2), multiplying both its
parts by e, and then integrating them with respect to e,
one obtains an equation for A = T, in the form

2 2
L2 ( V)2 + (~5/2 ~5)

6 d 0 (16)

where p = 24$(5)o.~hL 0~/D is a dimensionless param-
eter describing the energy relaxation of electrons in the

Therefore strong electron-electron scattering increases
the noise in comparison with its value in the absence
of inelastic scattering, Sr = seV/R. The reason for
this increase is that in the former case the electron-
electron scattering gives rise to partially occupied states
af e ) eV/2 and e ( —eV/2. This result is independent
of the dimensionality of the electron system because the
explicit form of the collision integral was not used in de-
riving (14). An increase of the shot noise in excess of
seV/R was experimentally observed in Ref. 5.

Now we consider the case where strong electron-
electron scattering coexists with weaker electron-phonon
scattering, which implies that

contacts and t, (5) is Riemann's zeta function. In the
right-hand side of (16), the second term corresponds to
spontaneous emission of phonons by the electrons and the
third term corresponds to the scattering of electrons by
thermal phonons. This equation should be supplemented
by the same boundary conditions as (ll), and the noise
is again given by (12) .

Unlike (11), Eq. (16) is nonlinear. Introducing a new
dimensionless variable @ = p ~ 0~ A, it is seen that
the behavior of the solution depends on the ratios of
eV and the characteristic energies eq ——p ~ 0~ T ~

an«z = p ~ 0D. If eV (( fy& 'lP P~ T /0~ al-
most through the whole length of the contact and the
noise differs inessentially Rom the equilibrium noise. If
eq « eV « e2, the second and the third terms in the
right-hand side of (16) may be neglected and, therefore,
one obtains the shot noise (14). If, lastly, eV )&
and eV )) ez, the vP(x) dependence takes a nearly rect-
angular shape: along almost the whole contact length,

(p ~ eV/0~) ~s so that the right-hand side of
(16) is zero, and it is only near the ends of the con-
tact that @ decreases to its values in the banks. Hence

Sr = 4p ~~s0D (eV) ~ /R. This is precisely the same
power-law dependence that was obtained in Ref. 2 in the
absence of electron-electron interaction yet with a dif-
ferent numerical coeKcient. At a constant voltage, the
ratio Sy/e~I~ decreases with increasing contact length ac-
cording to the law L ~, which differs from the L law
predicted in Refs. 1 and 4. This implies that the contact
cannot be considered as a series of mesoscopic resistors of
a certain characteristic length l, which are independent
sources of shot noise. This simple model does not work
because the energy relaxation of electrons is substantially
nonlinear and cannot be described by a characteristic re-
laxation length. Note also that the exponent 2/5 depends
on the particular form of the electron-phonon collision
integral and may be different, e.g. , for a different dimen-
sionality of the phonon system.

From this consideration, it follows that, as the con-
tact length L or the parameter of the electron-phonon
interaction o.ph increases, the shot-noise range of volt-
ages shrinks. Moreover, the larger the energy-relaxation
parameter p, the more difBcult is the condition eV ))

-3/2 5 2p / OD T ~ to implement because of the Joule heat-
ing of the lattice in the contact. Although we assumed T
and V to be independent variables throughout this paper,
in fact, T cx V at high voltages and the required rela-
tionship between eV and T finally is violated. For this
reason, nonequilibrium noise is not observed in macro-
scopic samples.

In summary, it was shown that different inelastic scat-
tering processes differently affect the shot noise in dirty
microcontacts depending on whether they conserve the
total energy of the electron system or not. For exam-
ple, electron-electron scattering increases the shot noise
because of the broadening energy band of partially oc-
cupied states in the contact and results in the universal
ratio Sr/e

~

I ~= ~z, which holds for both 3D and 2D
systems.

The reverse is true in the case of electron-phonon scat-
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tering, which takes up the energy of the electrons and
decreases their effective temperature to the lattice tem-
perature. This type of scattering suppresses the shot
noise and decreases the voltage range where the shot
noise is observed &om both sides. For long contacts,
the noise-to-current ratio decreases with increasing con-
tact length more slowly than its reciprocal. Eventually,

the increasing electron-phonon scattering results in the
nonequilibrium noise sinking to the equilibrium value.
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