
ARTIFICIAL ATOMS
The charge and energy of a sufficiently small particle of metal
or semiconductor are quantized just like those of an atom.
The current through such a quantum dot or one-electron
transistor reveals atom-like features in a spectacular way.

Marc A. Kasfner

The wizardry of modern semiconductor technology makes
it possible to fabricate particles of metal or "pools" of
electrons in a semiconductor that are only a few hundred
angstroms in size. Electrons in these structures can
display astounding behavior. Such structures, coupled to
electrical leads through tunnel junctions, have been given
various names: single-electron transistors, quantum dots,
zero-dimensional electron gases and Coulomb islands. In
my own mind, however, I regard all of these as artificial
atoms—atoms whose effective nuclear charge is controlled
by metallic electrodes. Like natural atoms, these small
electronic sytems contain a discrete number of electrons
and have a discrete spectrum of energy levels. Artificial
atoms, however, have a unique and spectacular property:
The current through such an atom or the capacitance
between its leads can vary by many orders of magnitude
when its charge is changed by a single electron. Why this
is so, and how we can use this property to measure the lev-
el spectrum of an artificial atom, is the subject of
this article.

To understand artificial atoms it is helpful to know
how to make them. One way to confine electrons in a
small region is by employing material boundaries—by
surrounding a metal particle with insulator, for example.
Alternatively, one can use electric fields to confine
electrons to a small region within a semiconductor. Either
method requires fabricating very small structures. This is
accomplished by the techniques of electron and x-ray
lithography. Instead of explaining in detail how artificial
atoms are actually fabricated, I will describe the various
types of atoms schematically.
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Figures la and lb show two kinds of what is
sometimes called, for reasons that will soon become clear,
a single-electron transistor. In the first type (figure la),
which I call the all-metal artificial atom,1 electrons are
confined to a metal particle with typical dimensions of a
few thousand angstroms or less. The particle is separated
from the leads by thin insulators, through which electrons
must tunnel to get from one side to the other. The leads
are labeled "source" and "drain" because the electrons
enter through the former and leave through the latter—
the same way the leads are labeled for conventional field-
effect transistors, such as those in the memory of your
personal computer. The entire structure sits near a large,
well-insulated metal electrode, called the gate.

Figure lb shows a structure2 that is conceptually
similar to the all-metal atom but in which the confinement
is accomplished with electric fields in gallium arsenide.
Like the all-metal atom, it has a metal gate on the bottom
with an insulator above it; in this type of atom the
insulator is AlGaAs. When a positive voltage Vg is
applied to the gate, electrons accumulate in the layer of
GaAs above the AlGaAs. Because of the strong electric
field at the AlGaAs-GaAs interface, the electrons' energy
for motion perpendicular to the interface is quantized, and
at low temperatures the electrons move only in the two
dimensions parallel to the interface. The special feature
that makes this an artificial atom is the pair of electrodes
on the top surface of the GaAs. When a negative voltage is
applied between these and the source or drain, the
electrons are repelled and cannot accumulate underneath
them. Consequently the electrons are confined in a
narrow channel between the two electrodes. Constrictions
sticking out into the channel repel the electrons and
create potential barriers at either end of the channel. A
plot of a potential similar to the one seen by the electrons
is shown in the inset in figure 1. For an electron to travel
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The many forms of artificial
atoms include the all-metal
atom (a), the controlled-barrier
atom (b) and the two-probe
atom, or "quantum dot" (c).
Areas shown in blue are
metallic, white areas are
insulating, and red areas are
semiconducting. The
dimensions indicated are
approximate. The inset shows
a potential similar to the one in
the controlled-barrier atom,
plotted as a function of
position at the semiconductor-
insulator interface. The
electrons must tunnel through
potential barriers caused by
the two constrictions. For
capacitance measurements
with a two-probe atom, only
the source barrier is made thin
enough for tunneling, but for
current measurements both
source and drain barriers
are thin. Figure 1

from the source to the drain, it must tunnel through the
barriers. The "pool" of electrons that accumulates be-
tween the two constrictions plays the same role that the
small particle plays in the all-metal atom, and the
potential barriers from the constrictions play the role of
the thin insulators. Because one can control the height of
these barriers by varying the voltage on the electrodes, I
call this type of artificial atom the controlled-barrier
atom. Controlled-barrier atoms in which the heights of
the two potential barriers can be varied independently
have also been fabricated.3 (The constrictions in these
devices are similar to those used for measurements of
quantized conductance in narrow channels as reported in
PHYSICS TODAY, November 1988, page 21.) In addition,
there are structures that behave like controlled-barrier
atoms but in which the barriers are caused by charged
impurities or grain boundaries.24

Figure lc shows another, much simpler type of
artificial atom. The electrons in a layer of GaAs are
sandwiched between two layers of insulating AlGa As. One
or both of these insulators acts as a tunnel barrier. If both
barriers are thin, electrons can tunnel through them, and
the structure is analogous to the single-electron transistor
without the gate. Such structures, usually called quantum
dots, have been studied extensively.56 To create the
structure, one starts with two-dimensional layers like
those in figure lb. The cylinder can be made by etching
away unwanted regions of the layer structure, or a metal
electrode on the surface, like those in figure lb, can be used
to repel electrons everywhere except in a small circular
section of GaAs. Although a gate electrode can be added to

this kind of structure, most of the experiments have been
done without one, so I call this the two-probe atom.

Charge quantization
One way to learn about natural atoms is to measure the
energy required to add or remove electrons. This is
usually done by photoelectron spectroscopy. For example,
the minimum photon energy needed to remove an electron
is the ionization potential, and the maximum energy of
photons emitted when an atom captures an electron is the
electron affinity. To learn about artificial atoms we also
measure the energy needed to add or subtract electrons.
However, we do it by measuring the current through the
artificial atom.

Figure 2 shows the current through a controlled-
barrier atom7 as a function of the voltage VK between the
gate and the atom. One obtains this plot by applying a
very small voltage between the source and drain, just large
enough to measure the tunneling conductance between
them. The results are astounding. The conductance
displays sharp resonances that are almost periodic in Vg.
By calculating the capacitance between the artificial atom
and the gate we can show2-8 that the period is the voltage
necessary to add one electron to the confined pool of
electrons. That is why we sometimes call the controlled-
barrier atom a single-electron transistor: Whereas the
transistors in your personal computer turn on only once
when many electrons are added to them, the artificial
atom turns on and off again every time a single electron is
added to it.

A simple theory, the Coulomb blockade model, ex-
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plains the periodic conductance resonances.9 (See PHYSICS

TODAY, May 1988, page 19.) This model is quantitatively
correct for the all-metal atom and qualitatively correct for
the controlled-barrier atom.10 To understand the model,
think about how an electron in the all-metal atom tunnels
from one lead onto the metal particle and then onto the
other lead. Suppose the particle is neutral to begin with.
To add a charge Q to the particle requires energy Q2/2C,
where C is the total capacitance between the particle and
the rest of the system; since you cannot add less than one
electron the flow of current requires a Coulomb energy
ei/2C. This energy barrier is called the Coulomb blockade.
A fancier way to say this is that charge quantization leads
to an energy gap in the spectrum of states for tunneling:
For an electron to tunnel onto the particle, its energy must
exceed the Fermi energy of the contact by e'2/2C, and for a
hole to tunnel, its energy must be below the Fermi energy
by the same amount. Consequently the energy gap has
width e'2/C. If the temperature is low enough that
kT<e'~/2C, neither electrons nor holes can flow from one
lead to the other.

The gap in the tunneling spectrum is the difference
between the "ionization potential" and the "electron
affinity" of the artificial atom. For a hydrogen atom the
ionization potential is 13.6 eV, but the electron affinity,
the binding energy of H", is only 0.75 eV. This large
difference arises from the strong repulsive interaction
between the two electrons bound to the same proton. Just
as for natural atoms like hydrogen, the difference between
the ionization potential and electron affinity for artificial
atoms arises from the electron-electron interactions; the
difference, however, is much smaller for artificial atoms
because they are much bigger than natural ones.

By changing the gate voltage Ve one can alter the
energy required to add charge to the particle. Vg is
applied between the gate and the source, but if the drain-
source voltage is very small, the source, drain and particle
will all be at almost the same potential. With Vg applied,
the electrostatic energy of a charge Q on the particle is

E=QVg +Q2/2C (1)

For negative charge Q, the first term is the attractive
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• Increasing gate voltage Vg

Total energy (top) and
tunneling energies (bottom) for
an artificial atom. As the gate
voltage is increased the charge
Qo for which the energy is
minimized changes from
- / V e t o - ( / V + V4)e. Only

the points corresponding to
discrete numbers of electrons
on the atom are allowed
(dots on upper curves). Lines
in the lower diagram
indicate energies needed for
electrons or holes to tunnel
onto the atom. When
Qo = - (/V + '/, )e the gap in
tunneling energies vanishes
and current can
flow. Figure 3

interaction between Q and the positively charged gate
electrode, and the second term is the repulsive interaction
among the bits of charge on the particle. Equation 1 shows
that the energy as a function of Q is a parabola with its
minimum at Qo = — CVg. For simplicity I have assumed
that the gate is the only electrode that contributes to C; in
reality, there are other contributions.7

By varying Vg we can choose any value of Qo, the
charge that would minimize the energy in equation 1 if
charge were not quantized. However, because the real
charge is quantized, only discrete values of the energy E
are possible. (See figure 3.) When Qo = — Ne, an integral
number N of electrons minimizes E, and the Coulomb
interaction results in the same energy difference e2/2C for
increasing or decreasing TV by 1. For all other values of Qo

except Qo = — (N + V2 )e there is a smaller, but nonzero,
energy for either adding or subtracting an electron.
Under such circumstances no current can flow at low
temperature. However, if Qo = — (N+ \)e the state with
Q= — Ne and that with Q= —(N+ l)e are degenerate,
and the charge fluctuates between the two values even at
zero temperature. Consequently the energy gap in the
tunneling spectrum disappears, and current can flow. The
peaks in conductance are therefore periodic, occurring
whenever CVg =Q0= —(N+ V2)e, spaced in gate voltage
by e/C.

As shown in figure 3, there is a gap in the tunneling
spectrum for all values of Vg except the charge-degener-
acy points. The more closely spaced discrete levels shown
outside this gap are due to excited states of the electrons
present on the artificial atom and will be discussed more in
the next section. As Ve is increased continuously, the gap
is pulled down relative to the Fermi energy until a charge-
degeneracy point is reached. On moving through this
point there is a discontinuous change in the tunneling
spectrum: The gap collapses and then reappears shifted
up by e2/C Simultaneously the charge on the artificial
atom increases by 1 and the process starts over again. A
charge-degeneracy point and a conductance peak are
reached every time the voltage is increased by e/C, the
amount necessary to add one electron to the artificial
atom. Increasing the gate voltage of an artificial atom is

therefore analogous to moving through the periodic table
for natural atoms by increasing the nuclear charge.

The quantization of charge on a natural atom is
something we take for granted. However, if atoms were
larger, the energy needed to add or remove electrons
would be smaller, and the number of electrons on them
would fluctuate except at very low temperature. The
quantization of charge is just one of the properties that
artificial atoms have in common with natural ones.

Energy quantization
The Coulomb blockade model accounts for charge quanti-
zation but ignores the quantization of energy resulting
from the small size of the artificial atom. This confine-
ment of the electrons makes the energy spacing of levels in
the atom relatively large at low energies. If one thinks of
the atom as a box, at the lowest energies the level spacings
are of the order f?/ma2, where a is the size of the box. At
higher energies the level spacings decrease for a three-
dimensional atom because of the large number of standing
electron waves possible for a given energy. If there are
many electrons in the atom, they fill up many levels, and
the level spacing at the Fermi energy becomes small. The
all-metal atom has so many electrons (about 107) that the
level spectrum is effectively continuous. Because of this,
many experts do not regard such devices as "atoms," but I
think it is helpful to think of them as being atoms in the
limit in which the number of electrons is large. In the con-
trolled-barrier atom, however, there are only about 30-60
electrons, similar to the number in natural atoms like
krypton through xenon. Two-probe atoms sometimes
have only one or two electrons. (There are actually many
more electrons that are tightly bound to the ion cores of
the semiconductor, but those are unimportant because
they cannot move.) For most cases, therefore, the spec-
trum of energies for adding an extra electron to the atom is
discrete, just as it is for natural atoms. That is why a dis-
crete set of levels is shown in figure 3.

One can measure the energy level spectrum directly
by observing the tunneling current at fixed Vg as
a function of the voltage Vds between drain and
source. Suppose we adjust Vg so that, for example,
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Qo= —(N+ V4 )e and then begin to increase Vds. The
Fermi level in the source rises in proportion to Vds relative
to the drain, so it also rises relative to the energy levels of
the artificial atom. (See the inset to figure 4a.) Current
begins to flow when the Fermi energy of the source is
raised just above the first quantized energy level of the
atom. As the Fermi energy is raised further, higher
energy levels in the atom fall below it, and more current
flows because there are additional channels for electrons
to use for tunneling onto the artificial atom. We measure
an energy level by measuring the voltage at which the
current increases or, equivalently, the voltage at which
there is a peak in the derivative of the current, d//dVds.
(We need to correct for the increase in the energy of the
atom with Vds, but this is a small effect.) Many beautiful
tunneling spectra of this kind have been measured5 for
two-terminal atoms. Figure 4a shows one for a controlled-
barrier atom.7

Increasing the gate voltage lowers all the energy
levels in the atom by eVg, so that the entire tunneling
spectrum shifts with Vg, as sketched in figure 3. One can
observe this effect by plotting the values of Vds at which
peaks appear in d//dVds. (See figure 4b.) As Vg increases
you can see the gap in the tunneling spectrum shift lower
and then disappear at the charge-degeneracy point, just as
the Coulomb blockade model predicts. You can also see
the discrete energy levels of the artificial atom. For the
range of Vds shown in figure 4 the voltage is only large
enough to add or remove one electron from the atom; the
discrete levels above the gap are the excited states of the
atom with one extra electron, and those below the gap are
the excited states of the atom with one electron missing
(one hole). At still higher voltages (not shown in figure 4)
one observes levels for two extra electrons or holes and so
forth. The charge-degeneracy points are the values of Vg

for which one of the energy levels of the artificial atom is
degenerate with the Fermi energy in the leads when
Vds = 0, because only then can the charge of the atom
fluctuate.

In a natural atom one has little control over the
spectrum of energies for adding or removing electrons.
There the electrons interact with the fixed potential of the
nucleus and with each other, and these two kinds of
interaction determine the spectrum. In an artificial atom,
however, one can change this spectrum completely by
altering the atom's geometry and composition. For the all-
metal atom, which has a high density of electrons, the
energy spacing between the discrete levels is so small that
it can be ignored. The high density of electrons also
results in a short screening length for external electric

Discrete energy levels of an artificial atom
can be detected by varying the drain-source

voltage. When a large enough Vdi is applied,
electrons overcome the energy gap and tunnel

from the source to the artificial atom. (See
inset of a.) a: Every time a new discrete state

is accessible the tunneling current increases,
giving a peak in d//d l/ds. The Coulomb

blockade gap is the region between about
— 0.5 mV and + 0.3 mV where there are no

peaks, b: Plotting the positions of these peaks
at various gate voltages gives the level

spectrum. Note how the levels and the gap
move downward as VR increases, just as

sketched in the lower part of figure 3.
(Adapted from ref. 7.) Figure 4

fields, so electrons added to the atom reside on its surface.
Because of this, the electron-electron interaction is always
e2/C (where C is the classical geometrical capacitance),
independent of the number of electrons added. This is
exactly the case for which the Coulomb blockade model
was invented, and it works well: The conductance peaks
are perfectly periodic in the gate voltage. The difference
between the "ionization potential" and the "electron
affinity" is e'2/C, independent of the number of electrons
on the atom.

In the controlled-barrier atom, as you can see from
figure 4, the level spacing is one or two tenths of the energy
gap. The conductance peaks are not perfectly periodic in
gate voltage, and the difference between ionization
potential and electron affinity has a quantum mechanical
contribution. I will discuss this contribution a little later
in more detail.

In the two-probe atom the electron-electron interac-
tion can be made very small, so that one can in principle
reach the limit opposite to that of the all-metal atom. One
can find the energy levels of a two-probe atom by
measuring the capacitance between its two leads as a
function of the voltage between them.6 When no tunnel-
ing occurs, this capacitance is the series combination of
the source-atom and atom-drain capacitances. For ca-
pacitance measurements, two-probe atoms are made with
the insulating layer between the drain and atom so thick
that current cannot flow under any circumstances.
Whenever the Fermi level in the source lines up with one
of the energy levels of the atom, however, electrons can
tunnel freely back and forth between the atom and the
source. This causes the total capacitance to increase,
because the source-atom capacitor is effectively shorted
by the tunneling current. The amazing thing about this
experiment is that a peak occurs in the capacitance every

>

- 2 - 1 0 1

DRAIN-SOURCE VOLTAGE Vds (millivolts)

0.5

o

w - 0 . 5

\ .Vv •

lJil_
\ \ ' . . • . ' , . . ; -

1 ••. .

305 306 307 308 309 310 311

GATE VOLTAGE Vg (millivolts)

2 8 PHYSICS TODAY JANUARY 1993



- 6 5 0 - 600 - 550
DRAIN-SOURCE VOLTAGE Vds (millivolts)

- 5 0 0

time a single electron is added to the atom. (See figure 5a.)
The voltages at which the peaks occur give the energies for
adding electrons to the atom, just as the voltages for peaks
in dI/dVds do for the controlled-barrier atom or for a two-
probe atom in which both the source-atom barrier and the
atom-drain barrier are thin enough for tunneling. The
first peak in figure 5a corresponds to the one-electron
artificial atom.

Figure 5b shows how the energies for adding elec-
trons to a two-probe atom vary with a magnetic field
perpendicular to the GaAs layer. In an all-metal atom
the levels would be equally spaced, by e2/C, and would be
independent of magnetic field because the electron-
electron interaction completely determines the energy.
By contrast, the levels of the two-probe atom are irregu-
larly spaced and depend on the magnetic field in a
systematic way. For the two-probe atom the fixed
potential determines the energies at zero field. The level
spacings are irregular because the potential is not highly
symmetric and varies at random inside the atom because
of charged impurities in the GaAs and AlGaAs. It is
clear that the electron-electron interactions that are the
source of the Coulomb blockade are not always so
important in the two-probe atom as in the all-metal and
controlled-barrier atoms. Their relative importance de-
pends in detail on the geometry.5

Artificial atoms in a magnetic field
Level spectra for natural atoms can be calculated theoreti-
cally with great accuracy, and it would be nice to be able to
do the same for artificial atoms. No one has yet calculated
an entire spectrum, like that in figure 4a. However, for a
simple geometry we can now predict the charge-degener-
acy points, the values of Vg corresponding to conductance
peaks like those in figure 2. From the earlier discussion it
should be clear that in such a calculation one must take
into account the electron's interactions with both the fixed
potential and the other electrons.

The simplest way to do this is with an extension of the
Coulomb blockade model.11"13 It is assumed, as before,
that the contribution to the gap in the tunneling spectrum
from the Coulomb interaction is e2/C no matter how many
electrons are added to the atom. To account for the
discrete levels one pretends that once on the atom, each
electron interacts independently with the fixed potential.
All one has to do is solve for the energy levels of a single
electron in the fixed potential that creates the artificial
atom and then fill those levels in accordance with the
Pauli exclusion principle. Because the electron-electron
interaction is assumed always to be e2/C, this is called the

Capacitance of a
two-probe atom that has
only one barrier thin
enough to allow
tunneling, a: The
capacitance has a peak
every time a single
electron is added to the
atom. The positions of
the peaks give the
energy spectrum of the
atom, b: Peaks in
capacitance plotted
versus applied magnetic
field. The green line
indicates the rate of
change of the energy
expected when the
magnetic field
dominates. (Adapted
from ref. 6.) Figure 5

constant-interaction model.
Now think about what happens when one adds

electrons to a controlled-barrier atom by increasing the
gate voltage while keeping Vds just large enough so one
can measure the conductance. When there are N — 1
electrons on the atom the N— 1 lowest energy levels are
filled. The next conductance peak occurs when the gate
voltage pulls the energy of the atom down enough that the
Fermi level in the source and drain becomes degenerate
with the Ath level. Only when an energy level is
degenerate with the Fermi energy can current flow; this
is the condition for a conductance peak. When Vg is
increased further and the next conductance peak is
reached, there are TV electrons on the atom, and the Fermi
level is degenerate with the (N + l)-th level. Therefore to
get from one peak to the next the Fermi energy must be
raised by e2/C + (EN ( [ — EN), where EN is the energy of
the A t̂h level of the atom. If the energy levels are closely
spaced the Coulomb blockade result is recovered, but in
general the level spacing contributes to the energy
between successive conductance peaks.

It turns out that we can test the results of this kind of
calculation best if a magnetic field is applied perpendicu-
lar to the GaAs layer. For free electrons in two
dimensions, applying the magnetic field results in the
spectrum of Landau levels with energies (n + V2 )fuoc,
where the cyclotron frequency is ac = eB/m*c, and m* is
the effective mass of the electrons. In the controlled-
barrier atom and the two-probe atom, we expect levels
that behave like Landau levels at high fields, with
energies that increase linearly in B. This behavior occurs
because when the field is large enough the cyclotron
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radius is much smaller than the size of the electrostatic po-
tential well that confines the electrons, and the electrons
act as if they were free. Levels shifting proportionally to
B, as expected, are seen experimentally. (See figure 5b.)

To calculate the level spectrum we need to model the
fixed potential, the analog of the potential from the
nucleus of a natural atom. The simplest choice is a
harmonic oscillator potential, and this turns out to be a
good approximation for the controlled-barrier atom. Fig-
ure 6a shows the calculated level spectrum as a function of
magnetic field for noninteracting electrons in a two-
dimensional harmonic oscillator potential. At low fields
the energy levels dance around wildly with magnetic field.
This occurs because some states have large angular
momentum and the resulting magnetic moment causes
their energies to shift up or down strongly with magnetic
field. As the field is increased, however, things settle
down. For most of the field range shown there are four
families of levels, two moving up, the other two down. At
the highest fields there are only two families, correspond-
ing to the two possible spin states of the electron.

Suppose we measure, in an experiment like the one
whose results are shown in figure 2, the gate voltage at
which a specific peak occurs as a function of magnetic
field. This value of Vg is the voltage at which the 7Vth en-
ergy level is degenerate with the Fermi energy in the
source and drain. A shift in the energy of the level will
cause a shift in the peak position. The blue line in figure
6a is the calculated energy of the 39th level (chosen fairly
arbitrarily for illustration purposes), so it gives the
prediction of the constant-interaction model for the
position of the 39th conductance peak. As the magnetic
field increases, levels moving up in energy cross those
moving down, but the number of electrons is fixed, so
electrons jump from upward-moving filled levels to
downward-moving empty ones. The peak always follows
the 39th level, so it moves up and down in gate voltage.

Figure 6b shows a measurement14 of Vg for one
conductance maximum, like one of those in figure 2, as a
function of B. The behavior is qualitatively similar to that
predicted by the constant-interaction model: The peak
moves up and down with increasing B, and the frequency
of level crossings changes at the field where only the last
two families of levels remain. However, at high B the
frequency is predicted to be much lower than what is
observed experimentally. While the constant-interaction
model is in qualitative agreement with experiment, it is
not quantitatively correct.

To anyone who has studied atomic physics, the
constant-interaction model seems quite crude. Even the
simplest models used to calculate energies of many-
electron atoms determine the charge density and potential
self-consistently. One begins by calculating the charge
density that would result from noninteracting electrons in
the fixed potential, and then one calculates the effective
potential an electron sees because of the fixed potential
and the potential resulting from this charge density. Then
one calculates the charge density again. One does this
repeatedly until the charge density and potential are self-
consistent. The constant-interaction model fails because it
is not self-consistent. Figure 6c shows the results of a self-
consistent calculation for the controlled-barrier atom.14 It
is in good agreement with experiment—much better
agreement than the constant-interaction model gives.

Conductance line shapes
In atomic physics, the next step after predicting energy
levels is to explore how an atom interacts with the
electromagnetic field, because the absorption and emis-
sion of photons teaches us the most about atoms. For

artificial atoms, absorption and emission of electrons plays
this role, so we had better understand how this process
works. Think about what happens when the gate voltage
in the controlled-barrier atom is set at a conductance peak,
and an electron is tunneling back and forth between the
atom and the leads. Since the electron spends only a finite
time r on the atom, the uncertainty principle tells us that
the energy level of the electron has a width fi/r.
Furthermore, since the probability of finding the electron
on the atom decays as e~' / r , the level will have a
Lorentzian line shape.

This line shape can be measured from the transmis-
sion probability spectrum T(E) of electrons with energy E
incident on the artificial atom from the source. The
spectrum is given by

F2 +(E-ENf
(2)

where F is approximately fi/r and EN is the energy of the
iVth level. The probability that electrons are transmitted
from the source to the drain is approximately proportion-
al15 to the conductance G. In fact, G~(e2/h)T, where e2M
is the quantum of conductance. It is easy to show that one
must have G<e2/h for each of the barriers separately to
observe conductance resonances. (An equivalent argu-
ment is used to show that electrons in a disordered
conductor are localized for G < e2/h. See, for example, the
article by Boris L. Al'tshuler and Patrick A. Lee in PHYSICS

TODAY, December 1988, page 36.) This condition is
equivalent to requiring that the separation of the levels is
greater than their width F.

Like any spectroscopy, our electron spectroscopy of
artificial atoms has a finite resolution. The resolution is
determined by the energy spread of the electrons in the
source, which are trying to tunnel into the artificial atom.
These electrons are distributed according to the Fermi-
Dirac function,

/IE) = -

expl
E-E¥

kT

(3)

+ 1

where EF is the Fermi energy. The tunneling current is
given by

(4)=jj-T(E) [f(E) - f(E - eVds)} dE

Equation 4 says that the net current is proportional to the
probability f(E)T{E) that there is an electron in the source
with energy E and that the electron can tunnel between
the source and drain minus the equivalent probability
for electrons going from drain to source. The best
resolution is achieved by making Vds4kT. Then
[/IE) - f(E - eV^^eV^idf/dE), and / i s proportional to
Vds, so the conductance is // V4s.

Figure 2 shows that equations 2-4 describe the
experiments well: At low Vg, where F is much less than
kT, the shape of the conductance resonance is given by the
resolution function df/dE. But at higher Vg one sees the
Lorentzian tails of the natural line shape quite clearly.
The width F depends exponentially on the height and
width of the potential barrier, as is usual for tunneling.
The height of the tunnel barrier decreases with Vg, which
is why the peaks become broader with increasing Vg. Just
as we have control over the level spacing in artificial
atoms, we also can control the coupling to the leads and
therefore the level widths. It is clear why the present
generation of artificial atoms show unusual behavior only
at low temperatures: When kT becomes comparable to
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the energy separation between resonances, the peaks
overlap and the features disappear.

Applications
The behavior of artificial atoms is so unusual that it is nat-
ural to ask whether they will be useful for applications to
electronics. Some clever things can be done: Because of
the electron-electron interaction, only one electron at a
time can pass through the atom. With devices like the
"turnstile" device1617 shown on the cover of this issue the
two tunnel barriers can be raised and lowered indepen-
dently. Suppose the two barriers are raised and lowered
sequentially at a radio or microwave frequency v. Then,
with a small source-drain voltage applied, an electron will
tunnel onto the atom when the source-atom barrier is low
and off it when the atom-drain barrier is low. One
electron will pass in each time interval v~\ producing a
current ev. Other applications, such as sensitive elec-
trometers, can be imagined.918 However, the most inter-
esting applications may involve devices in which several
artificial atoms are coupled together to form artificial
molecules161719 or in which many are coupled to form
artificial solids. Because the coupling between the artifi-
cial atoms can be controlled, new physics as well as new
applications may emerge. The age of artificial atoms has
only just begun.
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