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1 Introduction

The electrical charge is quantized in the elementary quantum −e carried by single
electrons. In mesoscopic systems at sufficiently low temperature, this discrete ele-
mentary charge can give rise to peculiar electrostatic effects. With achieving the
ability of making small devices on the scale of less than few hundred nanometers,
devices based on single-electron charging effects have been proposed and realized
in the last 15 years.

After a brief introduction to the concepts of Coulomb blockade and single-
electron charging, some device concepts for applications are presented, but also
arrangements for studying basic physics of electrical transport relevant for mole-
cular electronics are discussed. The presented picture for electrical transport
through conducting mesoscopic particles (‘island’) by single-electron tunneling
breaks down if correlated electron tunneling takes place. Under certain circum-
stances, correlated electron tunneling leads even to the conductance of a one-
dimensional channel although Coulomb blockade is expected.

For historical reviews, further readings and other approaches to the topic of
single-electron devices, the articles [1–8] are recommended. Especially for super-
conducting devices not treated here, we refer to [9,10], for proposals of using
single-electron devices as qubits to [11] (quantum dots as islands), and [12] (su-
perconducting devices).

The experimental data presented here have been collected during the last ten
years in our institute. For their contributions I would like to thank my coworkers
on this topic during that time – Jan Hüls, Matthias Keller, David Quirion, Jörg
Schmid, Yayi Wei, Armin Welker, Ulf Wilhelm, and Klaus v. Klitzing. Of course,
similar data can be found in literature published by other groups.

2 Single-Electron Charging Energy
and Coulomb Blockade Effect

Figure 1 shows an arrangement of an electrically uncharged metal island embed-
ded in a dielectric medium and surrounded by other metal electrodes which are
electrically connected. By transfering a single electron from the electrodes to the
island, the island is charged negative to q = −e and positive image charges q1, q2
spread over the electrodes (see Fig. 1b). Note, the overall charge of the system
compensates to zero: −e + q1 + q2 = 0. Similarly, by transferring an electron
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Fig. 1. (a) A metal island embedded between electrodes which are electrically connec-
ted. Transfering an electron onto the island (b) or taking off the electron from the
island (c) charges the capacitor formed by the island and the electrodes.

from the electrically uncharged island to the electrodes, the island is charged
positively and negative image charges are induced on the surrounding electro-
des (see Fig. 1c). The arrangement resembles a capacitor configuration with the
capacitance CΣ where the island reflects one electrode of this capacitor and the
others form all together the counter electrode. For both charge configurations
(q = −e and q = e), the electrostatic energy EC

EC =
e2

2CΣ
(1)

is stored in the arrangement. The quantity EC is usually denoted as single-
electron charging energy1. This energy is required for the separation of a single
electron from its positive counter charge spread over the other conductors. It is
the electrostatic energy barrier felt by the single electron moving onto or from
the electrically neutral island.

Usually this energy EC is not noticeable since the island size and therefore CΣ
is large. However, for CΣ < 10−15 F which corresponds2 to the ‘self-capacitance’
CΣ = 4πε0εR of a metallic sphere with radius R < 1µm embedded in a dielectric
medium with ε = 10, EC exceeds the thermal energy kBT at T = 4 K. For
CΣ < 3·10−18 F which is fulfilled for R < 2.8 nm, even kBT at room temperature
(T = 300 K) is exceeded. From this, we have to conclude that the single-electron
charging energy EC is of importance to describe single-electron movements in
systems from mesoscopic size down to atomic size.

A simple two-terminal arrangement for discussing the consequence is shown
in Fig. 2a. A small island is embedded between two lead electrodes denoted as
source S and drain D. Thin insulators separate the island from the two leads.
These layers should be thin enough that – due to quantum mechanics – tunne-
ling of electrons through the insulator layers is possible, thick enough that it is
plausible to describe single electrons in the system as being localized either on
the metal island or the lead electrodes. Since the metal island is almost isolated,
the total charge on the metal electrodes is considered as being quantized in the
elementary charge e. Due to EC which is required for recharging the island by

1Sometimes [2] the quantity e2/CΣ is denoted by the same name.
2Counter electrode at infinite distance.



Single-Electron Devices 89

(a) (b)

(c)

= 0

= 0

VDS IDS IDSVDS

CS

Source Drain
Island Tunnel Barriers

CD

q

VDS

IDS

e
2CΣ

2

CE   =

Drain

ε

Source

Island

x

eVDS
(th)

e2

CΣ

∆ I   SE

E∆ D   I

E∆ S   I

eVDS

E∆ I   D

e2

CΣ

eVDS
(th)

∆ S   IE

E∆ I   D

e2

CΣ

Fig. 2. (a) Two-terminal arrangement for discussing the Coulomb blockade effect in
electrical transport. (b) The respective capacitance circuit. Note CΣ = CS + CD. (c)
Sketch of the expected non-linear IDS(VDS) characteristic with energy schemes for
distinct VDS values reflecting the energetical position of the Fermi levels of the island
for charge states q = −e and q = e relatively to the Fermi level of source and drain.

a single electron entering or leaving, electrical transport is suppressed around
VDS = 0 if EC � kBT (Coulomb blockade effect of electrical transport).

With increasing bias voltage VDS > 0, the electrostatic energy barriers for
adding an electron from source

∆ES→I = EC − e
CD

CΣ
VDS (2)

and the electrostatic energy barrier for an electron leaving to drain

∆EI→D = EC + e
CD

CΣ
VDS − e VDS (3)

are reduced as a consequence of the applied voltage VDS (The respective capaci-
tance circuit is given in Fig. 2b). Similar happens for VDS < 0. The suppression
of current is finally overcome for

|VDS| ≥ V
(th)
DS ≡ min

(
e

2CS
;

e

2CD

)
, (4)

and the drain-source current |IDS| rises rapidly with increasing |VDS|. If EC �
kBT , for such a two-terminal device a non-linear current-voltage characteristic
with threshold values lying symmetrically around VDS = 0 is obtained.
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3 Concept of a Single-Electron Transistor (SET)

Instead of overcoming the Coulomb blockade by increasing VDS, a gate electrode
G with variable gate-voltage VGS can be added to the arrangement (see Fig. 3a).
With increasing gate voltage VGS, the electrostatic potential of the island is
shifted due to the capacitance circuit sketched in Fig. 3b. With increasing VGS >
0, negative charge is accumulated on the island – not in a continuous but in
a step-like manner as sketched in Fig. 3c (single-electron charging). The first
electron is charged at VGS = V

(th)
GS when the electrostatic energy for an electron

on the island is lowered just compensating for EC, i.e.,

∆ES→I = EC − e
CG

CΣ
VGS

!= 0 , (5)

leading to the threshold voltage

V
(th)
GS =

EC

eCG/CΣ
=

e

2CG
. (6)

At this gate-voltage value, the charge state of the island fluctuates by e. Applying
a small drain-source voltage VDS, a directed current is measured between source
and drain – carried by single electrons passing one after the other the island.

What about charging the electrically neutral island by ∆N electrons from
the source lead? The electrostatic energy stored in such a charge configuration
(q = −∆N e) – under the condition that VDS and VGS are fixed – is given by

Eelst(∆N ;VGS,VDS) = −∆N e

(
CG

CΣ
VGS +

CD

CΣ
VDS

)
+

(∆N e)2

2CΣ
. (7)

The first term describes the potential energy of ∆N electrons at the electrostatic
potential which is found due to the capacitance divider at the electrically neutral
island. The second term takes into account the work which has to be done to
separate the charge q = −∆N e from its counter charge spread over the electrodes
source S, drain D and gate G.

Having already charged the island with ∆N electrons, the next electron ‘∆N+
1’ moving from source to the charged island feels at fixed applied VGS and VDS
the electrostatic energy difference

∆ES→I(∆N+1;VGS,VDS) = Eelst(∆N+1;VGS,VDS) − Eelst(∆N ;VGS,VDS)

=
(

∆N + 1
2

) e2

CΣ
− e

CG

CΣ
VGS − e

CD

CΣ
VDS . (8)

Similarly, having ∆N electrons on the island, the electron ‘∆N ’ feels for moving
towards drain the electrostatic energy difference

∆EI→D(∆N ;VGS,VDS) = Eelst(∆N−1;VGS,VDS) − e VDS − Eelst(∆N ;VGS,VDS)

= −
(

∆N − 1
2

) e2

CΣ
+ e

CG

CΣ
VGS − e

(
1 − CD

CΣ

)
VDS . (9)
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Fig. 3. (a) Three-terminal arrangement of a single-electron transistor. (b) The respec-
tive capacitance circuit. Note CΣ = CS + CD + CG. (c) With increasing gate voltage
VGS, electrons are accumulated on the island. Whenever the charge state can energe-
tically fluctuate by e, i.e., the energy for two charge states is degenerate, current IDS

flows for small applied VDS through the island, leading to a periodically modulated
IDS(VGS)-characteristic – the Coulomb blockade oscillations. For distinct VGS values,
the respective energy schemes are given.

It contains the final electrostatic energy −e VDS of the electron on the drain site.
The energy differences Eelst(∆n;VGS,VDS) −Eelst(∆n−1;VGS,VDS) with n ∈ {· · · ,

N − 1, N,N + 1, · · · } define an energy ladder with fixed energy level spacing
2EC = e2/CΣ which shifts linearly with VDS and VGS: For given VDS and VGS
the level ‘∆n’ reflects the energetical position of the Fermi level on the island rela-
tively to the Fermi levels of the two leads if the island is charged to q = −∆ne.
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The relative position of this energy ladder are given for distinct parameters
(VGS;VDS ≈ 0) in the energy schemes of Fig. 3c. In thermodynamic equilibrium,
∆n = ∆NG additional electrons are trapped on the island if

for VDS ≥ 0
∆ES→I(∆NG+1;VGS,VDS) > 0 and ∆EI→D(∆NG;VGS,VDS) > 0 , (10)

for VDS ≤ 0
∆EI→S(∆NG;VGS,VDS) > 0 and ∆ED→I(∆NG+1;VGS,VDS) > 0 . (11)

Whenever ∆ES→I = 0 or ∆EI→D = 0, the charge state of the island can
fluctuate by e. Applying a small drain-source voltage VDS, a directed current
is measured between source and drain. With changing the gate voltage VGS at
small VDS, the current is modulated with the gate voltage period

∆VGS =
e

CG
(12)

as sketched in Fig. 3c. This characteristic is denoted as Coulomb blockade os-
cillations (CBOs). Since the current is carried by single electrons passing the
island one-by-one, the three-terminal device with such a characteristic is named
single-electron transistor (SET) [13,14].

Evaluating (10) and (11) allows to define transport regions for a single-
electron transistor as a function of the drain-source voltage VDS and the gate
voltage VGS. The result is sketched in Fig. 4: Light grey shaded are the regions of
Coulomb blockade (fulfilling (10) and (11)) at low temperature where the electron
number is fixed. Fluctuations by only one electron charge −e are possible in the
adjacent regions. These are the regions of single-electron tunneling since there
the electrons are passing the island one after the other. Along the gate voltage
axis with VDS ≈ 0, the Coulomb blockade oscillations are obtained. With furt-
her increasing |VDS|, more and more charge configurations become energetically
possible. For distinct parameter configurations (VDS, VGS), the respective energy
scheme are depicted. For the metal single-electron transistor, the transport cha-
racteristics are periodic in VGS: With each gate voltage change ∆VGS = e/CG,
the same electrostatic energy barriers for recharging the island are present – only
with one electron more trapped on the island.

The borderlines between Coloumb blockade and single-electron tunneling re-
gime have the slopes

dVGS

dVDS

∣
∣
∣
∣∆ES→I=0

= −CD

CG
and

dVGS

dVDS

∣
∣
∣
∣∆EI→D=0

=
CΣ − CD

CG
. (13)

Note, these relations are valid for the special choice of the source electrode as
the reference electrode for all applied voltages.

One should also realize that the notation of the two different transport regions
of a single-electron transistor – Coulomb blockade and single-electron tunneling
regime – as a function of VDS and VGS are obtained due to energy considerati-
ons. Multi-electron transport is predicted at higher |VDS| values where regions of
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Fig. 4. Transport regions of a single-electron transistor as a function of VDS and VGS.
This pattern is usually referred to as ‘diamond-like’.

more than two charge states could coexist. However, SETs with strongly asym-
metric tunnel barriers also show single-electron transport at these higher |VDS|
values: An electron leaving via the thicker tunnel barrier is almost immediately
replaced by an electron tunneling through the thinner tunnel barrier; for oppo-
site drain-source voltage an electron entering the island via the thicker tunnel
barrier leaves usually faster via the thinner barrier than another electron can
enter via the thicker barrier. The dynamics of the system restrict the charge
fluctuations on the island to e. Under such conditions the current IDS increases
in a step-like manner with increasing |VDS| whenever another charge state has
become energetically available, i.e., a boundary line in Fig. 4 is crossed with
increasing |VDS|. The so-called Coulomb-staircase characteristic in IDS(VDS) is
obtained [15].
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4 Examples for the Realization
of Single-Electron Transistors

Two examples for the realization of a single-electron transistor are discussed
in this section. First, a device made from metal is shown to demonstrate that
small metal islands indeed offer transport characteristics dominated by Coulomb
blockade and single-electron charging effects although more than 109 electrons
are actually present in the condcution band of the island. In contrast, as the
second realization, a SET made from a semiconductor material is presented. It
contains a quantum dot as the island with a small number of trapped electrons
(about 10 to 20) and a discrete excitation spectrum, and even allows the in-situ
control over the tunnel coupling between island and leads. Due to their in-situ
tunability, such quantum dot systems can act as model systems for studying basic
phenomena in electrical transport through single molecules or atoms embedded
between lead electrodes.

Other arrangements and realizations of single-electron transistors can be fo-
und in the literature cited in the introduction.

4.1 Single-Electron Transistor Made from Metal

An example for a metal single-electron transistor made from aluminum is shown
in ‘Cross Section 1’ of Fig. 5a and as a scanning-electron microscope image in
Fig. 5b. The devices is fabricated by using a two-angle evaporation technique
also used to fabricate the first SET [16]: With electron-beam lithography, a two-
layer organic resist is patterned resulting in openings to the substrate with large
undercut (see ‘Cross Section 2’). In vacuum, aluminum layers are evaporated
twice under different angles through the openings onto the substrate. By an in-
situ oxidation between first and second evaporation process, a thin aluminum
oxide of few nanometers is formed on the first aluminum layer. The resist is
lifted off and a metal structure remains on the substrate. Due to the two different
evaporation angles, the metal patterns of the first and second evaporation process
are slightly shifted against each other leading to an overlap in certain regions.
In the overlap regions, the thin aluminum oxide acts as tunnel barriers between
both aluminum layers, whereas the uncovered aluminum is unavoidable oxidized
further in air. The island has a length of 1µm and a width of 0.1µm. The overlap
region defining the tunnel barriers towards the leads are 0.1µm by 0.1µm in
size. Coulomb blockade oscillations measured on this device at T = 0.1 K for
VDS = 80µV are shown in Fig. 5c. As the gate electrode, a conductive layer
in the substrate 86 nm below the surface is used. Due to the small size of the
device, the total capacitance CΣ – dominated by the overlap regions of the
tunnel junctions – is small leading to EC ≈ 0.1 meV. In Fig. 5d the measured
IDS(VDS, VGS) characteristics of a similar metal single-electron transistor (EC
slightly smaller) are shown. Clearly the Coulomb blockade regions are visible.
Beyond the respective threshold in VDS, the current IDS increases.
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microscope image. (c) Coulomb-blockade oscillations. (d) IDS(VDS, VGS) characteristics
measured at T = 0.1 K. (from Y.Y. Wei, J. Hüls et al., MPI-FKF)

4.2 Single-Electron Transistor Containing a Quantum Dot as Island

Quantum dots or zero-dimensional electron systems are objects where electrons
are confined in a small enclosure allowing the single electron only certain eigenva-
lues for its energy due to the wave character of electrons as quantum mechanical
particles. As sketched in Fig. 6, with decreasing the size of the island, the quasi-
continuous single-particle energy spectrum (like that of a metal) turns into a
discrete one (like that of an atom) if the deBroglie wavelength λF = h/

√
2mεF

of an electron at the Fermi energy εF of the respective bulk material becomes
comparable to the island diameter D.

A realization of a single-electron transistor with a quantum dot as island is
shown in Fig. 7 – denoted as split-gate quantum dot system: Base is a GaAs/
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Fig. 6. Enclosing electrons to a smaller space, only certain eigenvalues for their kinetic
energy become possible (Sketch!). Spatial enclosures with a discrete single-particle
spectrum are denoted as quantum dots.

Al0.33 Ga0.67As heterostructure containing a two-dimensional electron system at
the GaAs/AlGaAs heterojunction interface 86 nm below the surface. In GaAs,
the effective mass of an electron in the conduction band is rather small, m =
0.07m0 where m0 is the free electron mass. Therefore, single-particle energy
level spacing ∆ε of several meV are achieved for GaAs islands of few tens of
nanometers – large enough to be resolved at low temperature (kBT = 1 meV at
T = 12 K). To define the quantum dot system, metallic gates were deposited on
top of a mesa remained after partially etching the surface of the heterostructure.
The 2DES is electrically contacted by alloying metal at certain regions of the
mesa. The diameter of the area between the tips of the gate fingers is here about
0.35 µm. With applying negative voltages to the gate electrodes, the 2DES is
divided in parts, defining the quantum dot of about 0.2 µm in diameter between
the gate fingers, coupled by tunnel barriers to parts of the 2DES acting as source
and drain leads. In addition to these topgates, a metallic backgate electrode on
the reverse side of the undoped substrate (0.5 mm thick) is used to change the
electrostatic potential of the quantum dot by changing the applied voltage VBS.
In Fig. 7b, a typical curve of the conductance IDS/VDS versus the backgate
voltage for small drain-source voltage (VDS ≈ 5µV) is shown – the Coulomb
blockade oscillations (T = 0.1 K). In contrast to the CBO characteristic shown
for the metal single-electron transistor, the peak heights are strongly modulated
and the peak distances are not exactly periodic. Both effects are even emphasized
by applying a magnetic field as shown in Fig. 7c. This indicates that the character
of the electronic states of the quantum dot – changed by the magnetic field –
affects the electrical transport.
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Fig. 7. SET with quantum dot as island: (a) Metallic gates on top of a GaAs-AlGaAs
heterostructure are used to define a quantum dot system by partially electrostatically
depleting a two-dimensional electron system (2DES). (b) Coulomb blockade oscillations
as a function of the backgate voltage VBS. (c) Coulomb blockade oscillations IDS(VBS)
for different magnetic fields applied in parallel to the plane of the 2DES. (d) Differential
conductance dIDS/dVDS in greyscale as a function of VDS and VGS. (from J. Weis et
al., MPI-FKF)

5 Quantum Dot as an Interacting N -Electron System:
An Artifical Atom with Tunable Properties

Obviously the electrostatic model is not sufficient, i.e., the description has to be
extended. A better approach is to ask which is the energy necessary for adding
an electron into a given confining potential (defined by gate electrodes with elec-
trostatic potentials {Vi}, material composition and fixed charges due to donors
and acceptors) when already the number N of electrons is present. To answer
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this, N and N + 1 electrons have to be treated quantum-mechanically as inter-
acting N and N + 1 electron systems in the confining potential. A Hamiltonian
Ĥ(n; {Vi}) of n electrons modeling the electrostatics of realistic quantum dots
has the form [17]

Ĥ(n;{Vi}) =
n∑

s=1

p̂2
s

2m
−

n∑

s=1

eΦext(r̂s; {Vi}) + 1
2

n∑

s=1

n∑

s′=1
s′ �=s

e2G(r̂s, r̂s′) (14)

where p̂s and r̂s denote the momentum and position operator for electron s,
respectively. The quantity G(r, r ′) is the electrostatic Green’s function for de-
scribing the electrostatics of the system without the presence of the n electrons
[17]. The physical meaning of q G(r, r ′) is the electrostatic potential contribution
at position r caused by a point charge q located at r ′ in the given arrangement.
In particular, it describes the electrostatic electron-electron interaction in the
quantum dot taking into account the electrostatic screening effect by the elec-
trodes and the dielectric medium. Comparing (14) with (7), it becomes clear
that the effective electron-electron interaction (last term in (14)) is responsi-
ble for the Coulomb blockade effect in quantum dots. The confining potential
Φext(r; {Vi}) is given by the fixed charge distribution, the arrangement of the
electrodes and conduction band offsets due to the use of different materials (see
Fig. 8a). It is independent of the electron number confined in the quantum dot.
The electrostatic contributions to Φext(r; {Vi}) can all be expressed by G(r, r ′)
[17]. One should note that the confining potential depends linearly on the el-
ectrostatic potentials {Vi} of the electrodes, i.e., the electrostatic potential at
position r is linearly shifted with changing Vi, i.e.,

Φext(r; {Vi}) ∝
∑

i

αi(r )Vi (15)

where the quantity αi(r ) reflects the fraction of image charge induced by a point
charge at position r in the arrangment on electrode i.

By solving the Schrödinger equation

Ĥ(n;{Vi}) |n, l; {Vi}〉 = E(n,l;{Vi}) |n, l; {Vi}〉 (16)

a total energy spectrum E(n,l;{Vi}) for the confined n-electron system is ob-
tained for a certain set of applied voltages {Vi}. For convenience, the index l
represents a set of quantum numbers that characterizes the different n-electron
states |n, l; {Vi}〉 starting from l = 0 for the groundstate, and numbering the
excited states unambiguously further with increasing energy E(n,l;{Vi}).

Looking at the Hamiltonian (14), it becomes clear why quantum dots have
sometimes been denoted as artifical atoms [19,20] with tunable properties: The
confining potential for electrons in an atom (the Coulomb potential of the bare
nucleus) is replaced by Φext(r; {Vi}). The pure Coulomb interaction between
electrons in atoms has to be replaced by e2G(r, r ′) if electrostatic screening due
to the dielectric medium or surrounding electrodes is present. In principle, both
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electrodes. (δ) Conduction band offsets by using different materials. (b) Total energy
spectra for one, two and three electrons confined in a parabolic confining potential
(�ω0 = 2 meV) (adopted from D. Pfannkuche et al. [18]).

Φext(r; {Vi}) and G(r, r ′) can be designed to purpose. If the confining potential
obeys spatial symmetries, certain degeneracies in the electronic spectrum can be
expected. On the other hand, certain shapes of the confining potential allow to
consider the quantum dot as a chaotic system.

In a very popular model – the Constant Interaction Model (CIM) [21,15] –
the total energy E(n; {Vi}) is written as

E(n;{Vi}) =
n∑

s=1

εs − n e
∑

i

Ci

CΣ
Vi +

(n e)2

2CΣ
− n e · const (17)

where εs is the eigenenergy of the single electron ‘s’ in the (effective) confining
potential of the quantum dot. Due to Pauli’s principle, single-particle states
are sequentially occupied with increasing electron number n and the electron-
electron interaction is treated by the constant CΣ. This description is not gene-
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rally valid: One should note that – different to atoms – due to the larger size, in
quantum dots usually the electron-electron interaction is dominating the elec-
tronic properties and not the quantization effect on the kinetic energy due to the
confining of the electrons. The total energy spectrum becomes complex as shown
as an example in Fig. 8b. The electrons in the quantum dot feel each other and
behave correlated (which is an exciting subject on its own (see for recent review
[22])).

6 Transport Spectroscopy on Quantum Dot Systems

Having N electrons confined, they will end up in the groundstate |N, 0; {Vi}〉 at
low temperature. The minimum in energy required for adding another electron
to the system is achieved when ending in the groundstate |N + 1, 0; {Vi}〉 of the
N + 1 electron system. The energy ladder

µ(n;{Vi}) ≡ E(n,0;{Vi}) − E(n−1,0;{Vi}) , where
n ∈ {· · · , N − 1, N,N + 1, · · · } (18)

gives for fixed potentials {Vi} by its position relatively to the electrochemical
potentials (Fermi levels) µS and µD of source and drain the energy barriers
for recharging the quantum dot by a single electron. Under circumstances this
energy ladder is linearly shifted with changing one of the applied voltages VGS
and VDS: The characteristic ‘diamond-like’ transport regions of a single-electron
transistor as shown in Fig. 4 are recovered – although not that regular in size. The
boundaries between the different charge states in the VDS vs. VGS are obtained
with µS − µD = e VDS from

µ(n;{Vi}) = µS and µ(n;{Vi}) = µD

with n ∈ {· · · , N − 1, N,N + 1, · · · } . (19)

In Fig. 7d, the differential conductance dIDS/dVDS of the quantum dot sy-
stem is shown measured as a function of VDS and VBS. In the linear greys-
cale plot, white regions correspond to dIDS/dVDS < −0.1µS and black ones
to dIDS/dVDS > 2µS. Positive peaks in the differential conductance indicate
a step-like increase in the current IDS with increasing |VDS|, negative ones a
step-like decrease. Clearly the Coulomb-blockade regions are identified. In the
adjacent single-electron tunneling regions, additional peaks in the differential
conductance are observed indicating the opening of other transport channels
although the charge state of the quantum dot can only fluctuate by one elemen-
tary charge. These can be attributed to electrical transport using in competition
excited states of the quantum dot system [23–26].

What is the link between the total energy spectra of n and n + 1 electron
systems and that what is seen in the single-electron tunneling regime (‘trans-
port spectrum’)? In Fig. 9a, the fictitious total energy spectra for N and N + 1
electrons are given which lead to the energy ladder defined by the transistion
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Fig. 9. (a) Fictitious total energy spectra of N and N + 1 electrons confined in
the quantum dot. Bold are the groundstate energies. (b) Plot of the transition
energies E(n, k; {Vi}) − E(n − 1, l; {Vi}) as energy levels. Energy levels represen-
ting differences between groundstate energies are bold and marked the respective
n ∈ {· · · , N − 1, N, N + 1, · · · }. (b) Threshold lines for additional channels extrac-
ted from (a). Whether all are visible depends in detail on (quasi-)selection rules and
the dynamic of the system.

energies E(N+1,k;{Vi})−E(N,l;{Vi}) and plotted in Fig. 9b. It includes the transi-
tion energy µ(N ; {Vi}) = E(N+1,0;{Vi}) − E(N,0;{Vi}) between the groundstates.
With changing a gate voltage VGS or the drain-source voltage VDS, the energy
ladder is shifted, i.e., these levels come in resonance with µS or µD for certain
(VGS, VDS) values,

E(N+1,k;{Vi}) − E(N,l;{Vi}) = µS or
E(N+1,k′;{Vi}) − E(N,l′;{Vi}) = µD . (20)

By this, an additional transport channel might be opened on source or drain
side, respectively. However, it requires that the electron system of the quantum
dot is not captured in one of the groundstates and remains there, but allows for
fluctuations between N and N + 1, i.e., besides (20) at the same time

µS ≥ µ(N+1;{Vi}) ≥ µD (VDS > 0) or
µD ≥ µ(N+1;{Vi}) ≥ µS (VDS < 0) (21)

has to be fulfilled. Condition (20) defines for diverse l and k (l′ and k′) threshold
lines for additional transport channels in the VGS versus VDS plane. Fulfilling
this requirement, the transition |N + 1; k〉 → |N ; l〉 (|N ; l′〉 → |N + 1; k′〉) might
be usable for transport at these {Vi} if the initial state |N + 1; k〉 (|N ; l′〉) for
this transition is reached regularly via other transitions. It leads to the pattern
depicted in Fig. 9b.

With decreasing the size of a quantum dot, the single-particle eigenenergy
spacing ∆ε = εi − εj increases and might even exceed the electron charging
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Fig. 10. For increasing the ratio ∆ε/EC, the energy level scheme shows less tran-
sition energies. Therefore less additional transport channels due to (single-particle-)
excitations of the quantum dot are expected in the single-electron tunneling regime.

energy EC due to the electron-electron interaction on the quantum dot: The
single-electron charging energy – being a consequence of the unscreened electron-
electron interaction on the island – scales like EC ∝ 1/εD with the island diame-
ter D. The level spacing in a parabolic confining potential (taken as the simplest
example) scales like ∆ε = �ω0 = h2/(2mD2). As shown in Fig. 10, with increa-
sing ratio ∆ε/EC, the Coulomb blockade regions in the (VGS, VDS) plane vary
more and more in size with the electron number, and a less number of addi-
tional channels due to transitions to excited states occur in the single-electron
tunneling regime.3

In a first approach, the dynamics of electron transport can be described by
tunneling rates included in a master equation ansatz. The rate is proportional to
the tunneling probability for an electron leading to the transition |N + 1; k〉 →
|N ; l〉 (|N ; l′〉 → |N + 1; k′〉). Obviously such a transition is weighted by the
strength of the spatial overlap of the wavefunction of the quantum dot and the
respective reservoir. However, such a transition might also obey certain (quasi-
)selection rules due to spin conservation or correlation effects of the n-electron
system in the quantum dot [27–31]. Therefore, the properties of the N + 1 and
N -electron state are of importance. It might even occur that the occupation of

3This should be understood as a trend. Indeed, low lying excitations might be
possible in a correlated electron system.
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certain excited states blocks the electron transport through the quantum dot
[24] – as visible by the negative differential conductance in Fig. 7d.

7 Summarizing the Conditions for Coulomb Blockade

To summarize, the Coulomb blockade effect is observable in electrical transport
through small islands if

• the single-electron charging energy exceeds significantly the thermal energy,

µ(N+1;{Vi}) − µ(N ;{Vi})
2

� kBT (EC � kBT ) , (22)

• the applied drain-source voltage VDS is not too large,

e |VDS| < µ(N+1;{Vi}) − µ(N ;{Vi}) (e |VDS| < 2EC) , (23)

• the tunnel coupling to the leads is small, i.e., the island can be considered
as (quasi-)isolated. Due to Heisenberg’s uncertainty relation, the dwell time
τH of an electron on the island has to be so long that the uncertainty ∆εH ≈
h/τH for the energy of an electron on the island does not exceed the single-
electron charging energy, i.e.,

τH >
2h

µ(N+1;{Vi}) − µ(N ;{Vi})
(τH > h/EC) . (24)

This is usually achieved if the tunnel barriers to the lead electrodes have a
conductance which is much less than e2/h ≈ (26 kΩ)−1 – the conductance
of a ballistic (one-mode) one-dimensional channel.

Since the Coulomb blockade is based on an electrostatic effect, Coulomb
blockade and single-electron charging effect can be observed for tunneling through
quasi-isolated

• mesoscopic metal islands,
• mesoscopic superconducting islands,
• mesoscopic quantum dots,
• molecules and atom clusters, and
• bounded electron states to impurities.

Several examples will be given in the course of this school, for instance, single-
electron transistors containing a carbon nanotube as the island.

Depending on the confined electron number, size and effective mass of the
electrons, quantum dots resemble in one limit metal-like islands, in the other
limit they mimic atom-like properties. Furthermore, the electronic structure of
quantum dots can be affected by an applied magnetic field which allows to
study the character and degeneracy of electronic states and its influence on
electrical transport. Due to their tunability, such quantum dot systems have been
used as model systems for investigating interacting N -electron systems and for
approaching an understanding of electrical transport through single molecules
or single atoms weakly coupled to leads.
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8 Some Applications of Single-Electron Transistors

8.1 SET as a Voltage Signal Amplifier

The single-electron transistor can be used to amplify a voltage signal. Biasing
the SET with a constant current IDS as shown in Fig. 11, the voltage VDS drops
between the source and drain contact which depends in its magnitude on the
applied gate voltage VGS. Contour lines of constant current IDS are obtained in
the VDS vs.VGS plane parallel to the borderlines defining the different transport
regions of the SET as sketched in Fig. 4: A change dVGS causes due to (13) the
change

dVDS = −CG

CD
dVGS or dVDS =

CG

CΣ − CD
dVGS . (25)

The voltage signal dVGS is amplified in dVDS if
∣
∣
∣
∣
dVDS

dVGS

∣
∣
∣
∣
IDS=const

> 1 , (26)

i.e., voltage gain is present. For the SET this can only be obtained for the gate
voltage regime where the first relation of (25) is valid. That means CG > CD
[32]. Thus the capacitive coupling of the SET island to the gate electrode where
the voltage signal is applied has to be chosen larger than the capacitive coupling
to the drain electrode where the output voltage dVDS arises. The same can be
expressed more general in other words: The SET has to be designed in such a
way that the electron charge added to the island induces a larger fraction αG of
its image charge on the gate electrode than αD on the drain electrode,

αG > αD where αG =
CG

CΣ
and αD =

CD

CΣ
for metal SETs. (27)

This is at least required to obtain a voltage gain described by relation (26).

VDS

I DS const

CD

Slope
CG

−

Slope

CDCΣ

CG
−

VDS

I DS = 0

Source Drain

GateVGS Island

IDS

VGS

Fig. 11. SET as voltage signal amplifier.
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8.2 SET as an Electrometer Sensitive to a Fraction
of the Elementary Charge

The electrostatic potential of electrons on the SET island might not only be
changed by voltages applied to adjacent electrodes, but also by putting a charge
close to the SET island. As sketched in Fig. 12, adding a negative (positive)
charge Q shifts the CBO characteristic towards positive (negative) values of
VGS. How sensitive is the single-electron transistor to charges? If the charge
Q = ±e would be added directly to the island, then the CBO characteristic
is shifted by one period along the gate voltage axis. In this sense, the SET is
a highly sensitive electrometer which is even able to detect easily a fraction
of the elementary charge e by the change in its characteristics if the charge is
added closely to the island [33]. SETs have been demonstated as electrometers
with a charge sensitivity down to 8 · 10−8 e/

√
Hz at 10 Hz [34]. Incorporating

the SET into a radio-frequency resonance circuit – denoted as RF-SET [35]
– fast charge fluctuations are detectable (1.2 · 10−5 e/

√
Hz at 1.1 MHz). This

high charge sensitivity offers on one hand a ultrasensitive electrometer, on the
other hand it is a disadvantage for applications where a stable and reproducible
SET characteristic is required for a large number of SET devices – like in very-
large scale integration (VLSI) of digital circuits. Telegraph noise due to charge
fluctuations in the SET surroundings makes them almost useless for this purpose.

VGS’VGS’
∆

VDS

Q = 0

VDS 0

VGS

IDS
Q = 0

Source Drain

Gate

Q

IslandVGS

IDS

Fig. 12. SET as ultrasensitive electrometer.

8.3 SET as an Electrostatic Sensor in a Scanning Probe Microscope

The sensitivity of a single-electron transistor to the electrostatic environment
can be used to measure chemical potential variations of conducting materials
affected by external parameters [36]. A SET can even be incorporated into a
scanning probe microscope [37]: As sketched in Fig. 13, a SET is fabricated on
a microscopic glass tip which is then scanned over a substrate. Monitoring the
changes in the SET characteristics as a function of position, the SET can be
used as a local probe for the local electrostatic potential variations along the
substrate surface. With reducing the distance d between SET and substrate, the
capacitance between substrate and SET island reduces roughly like 1/d. There-
fore the CBOs, observed as a function of the voltage applied to the substrate,
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Fig. 13. SET as electrostatic sensor on a tip of a scanning probe microscope.

decrease in their periodicity, squeezing to a fix point on the substrate-SET vol-
tage axis just compensating for the instrinsic contact voltage between SET and
substrate. Such an SET on a scanning tip can be considered as an alternative
to a scanning force microscope running in the Kelvin probe mode [38] where the
local electrostatic force between tip and substrate is minimized by tuning the
substrate-tip voltage.

8.4 SET as a Current Rectifier

As shown in Fig. 4, the capacitance ratios −CD/CG and (CΣ − CD)/CG are
responsible for the slopes of the boundary lines between Coulomb blockade and
single-electron transport regions in the VGS vs. VDS plane. Therefore, threshold
values V (th)

DS at fixed VGS lie usually asymmetrically with respect to VDS = 0.
Therefore, SETs display a non-linear IDS(VDS) characteristics where the asym-
metry of the characteristics is tunable by VGS. Due to the non-linearity of such
devices around VDS = 0, frequency mixing of ac voltage signals is possible aro-
und VDS = 0. Especially a rectification process can occur: An applied ac bias
voltage VDS(t) results in a time-averaged net dc current [39]. Depending on the
ratio CD/CΣ, three different behaviours are expected (see Fig. 14): In the case
of CD/CΣ > 1

2 , for a fixed ac bias modulation with |VDS(t)| � e/CΣ, the se-
quence in the dc current polarity is zero/positive/negative/zero with increasing
VGS from one Coulomb blockade region to the next. In the case CD/CΣ < 1

2 the
sequence is zero/negative/positive/zero. Only in the case CD/CΣ = 1

2 , the net
current is basically zero over the whole VGS range.

9 The SET for Very-Large Scale Integration (VLSI)
of Digital Circuits?

Carrying the current by electrons passing the island one-by-one and being swit-
ched on and off by the elementary charge, the single-electron transistor can
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be considered as the ultimate transistor. Dealing with the smallest amount of
charge, it has been suggested with presenting the concept of a SET in the mid
1980´s that integrated circuits based on SETs would lead to lowest power con-
sumption.

It was already pointed out, the sensitivity of a SET on single-electron charge
fluctuations is a strong disadvantage in this context [40]. Despite of this, the
question arises: Is the SET conceptionally a severe candidate for replacing the
MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) which is used
nowadays as the electronic switch in digital circuits? Both transistor concepts
belong to the same class of electrostatically controlled switches and obey there-
fore the same electrostatic requirements for being a good switch for this applica-
tion. The answer is basically ‘no’ [41,40] which will be further explained in the
following.

The overall power dissipation is a severe problem of nowadays microprocessor
chips. The only known concept for logical circuits, fulfilling the requirement of
reliable computation [42] and thereby strongly suppressing the standby power
dissipation, is based on two complementary working switches (see Fig. 15). It
has lead to what is known as CMOS technology. Single-electron transistors can
be biased to different working points and then act complementary (one turns
on and the other off, controlled by the same voltage signal) [43]. However the
circuit concept requires that the transistors have voltage gain. This is hardly to
achieve for a single-electron transistor working at room temperature: The island
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size has to be only few nanometers to reach the high single-electron charging
energy, and at the same time the island has to be coupled capacitively stronger
to the gate electrode than to the leads (αG > αD)!

The voltage swing ∆V defines the difference in the voltage levels representing
logic ‘0’ and ‘1’. These are almost given by the positive and negative supply
terminals denoted by ‘0’ and ‘VDD’ in Fig. 15. The voltage ∆V drops as the
drain-source voltage over the transistor (see Fig. 15c and d): The ‘on’-current
driven through the transistor determines the speed by which the logic gates can
switch. The ‘off’-current is a leakage causing power dissipation even when the
circuit is not doing useful computation (static condition). VLSI requires typically
Ion/Ioff > 108 for fulfilling the required performance.

A switch based on tuning an energy barrier electrostatically via a gate voltage
leads to the superior characteristic

Ion
Ioff

= exp
αG e∆VGS

kBT
. (28)

The ratio between ‘on’ and ‘off’ current depends exponentially on the gate vol-
tage swing ∆VGS which is at the same time ∆V – the difference between the
voltage levels representing the logic ‘0’ and ‘1’ state. The quantity αG is limited
by 0 ≤ αG ≤ 1 and gives the fraction of image charge which is induced on the
controlling gate electrode by a charge in the channel of the electrostatic switch.

MOSFETs offer such an exponential characteristic where αG is close to one.
Actually this electrostatic requirement (αG → 1) is mainly the reason why MOS-
FET have to shrink in all spatial dimensions, and therefore the gate oxide of a
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0.1 µm MOSFET has been reduced already to 4 nm thickness! For SETs working
at room temperature, again, the request on the electrostatics αG close to one is
hardly to achieve.

MOSFETs offer for the ‘on’-current 0.5 mA per µm channel width – a value
which has remained constant over the last decades. Conceptionally, SETs are
limited in their capability in driving a current since electrons are passing the
island one-by-one. To have a large Ion, the dwell time of an electron on the is-
land has to be short. Therefore, the tunnel coupling has to be enhanced which
leads to a stronger leakage Ioff in the ‘off’-state. The ratio Ion/Ioff cannot follow
an exponential dependence on the gate voltage which make SETs worse: For a
certain ‘on’-current – required for recharging the connections and the inputs of
the following logic gates –, the ‘off’-current gets too high. This might be com-
pensated by increasing ∆V which again requires that the single-electron charging
energy is enlarged, i.e., the island size has to be shrinked even more. We have to
state [41]: Single-electron transistor circuits cannot fulfill the expectation of low
power dissipation at reasonable speed performance.

Note, these electrostatic constraints are also valid for using molecules as
islands as long as their switching mechanism is purely based on tuning an energy
barrier electrostatically. In conclusion, to overcome the severe problems of VLSI,
either new circuit design concepts are required – which have not been invented
up to now – or a switch has to be found which offers αG > 1 in relation (28).
Here is indeed potential for molecules if the switching of the electrical path is
controlled by the conformation change of the molecule, induced by an applied
electrical field.

10 Charge-Stability Diagram of Two-Island Devices

Up to now we have considered only devices with one island embedded between
electrodes of defined electrostatic potentials. Examples for two-island arrange-
ments are depicted in Fig. 16. Both islands are directly or indirectly connected
via tunnel barriers to electrodes. Without a capacitive coupling, the islands do
not feel each other. Therefore, in the ideal case, two gate electrode can be used
to control independently the charge state of the two islands. As a function of
the two gate voltages VG1,S and VG2,S, the charge configuration of the two-island
arrangement is stable within rectangular regions (indicated by dashed lines in
Fig. 16). Allowing capacitive interaction between both islands, the gate voltage
variations shifts the electrostatic potentials of both islands, and the charge states
of the islands affect each other. The charge stability diagram divides under such
a capacitive coupling between the islands into a honeycomb pattern as depicted
in Fig. 16.

All the two-island arrangements depicted in Fig. 16 have this charge stability
diagram. Which of these borderlines between the stable regions are actually seen
in electrical transport depends on how source and drain electrodes are connected.
For the arrangement (I), for instance, only the triple points are visible.
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By using quantum dots as islands, molecule-like states can be formed [44,45]
by increasing the tunnel coupling between these ‘artifical atoms’. The charge
stability diagram pattern deviates at the triple points.

11 Single-Electron Turnstile and Single-Electron Pump

Having control over single electrons, why not creating a device which transfers a
single electron within a cycle – controlled by external ac voltage signals – from
source to drain? The current passing such a device is determined by the cycle
frequency f ,

IDS = e f . (29)

Such a devices would allow to define a current standard and to close the quantum
metrological triangle [13,1] depicted in Fig. 17a: Three basic physical quantities
– current I, voltage V and frequency f – are linked by three fundamental effects
– the Josphson effect connects V with f , the quantum Hall effect V with I, and
perhaps a single-electron device obeying (29) connects I with f . Closing this
triangle would allow to represent their units with higher precision and even to
check whether the fundamental relations given in Fig. 17 are indeed valid.

One version of such a single-electron device is sketched in Fig. 17b denoted
as single-electron turnstile: The tunnel barriers of a single-electron transistor are
tuned similarly to the cycle which the gates of a water lock have to follow to
transfer a ship between two water levels through the lock. The Coulomb blockade
effect ensures that the island is charged each cycle only with one electron. Such
a turnstile with tunable tunnel barriers has been realized by using a split-gate
quantum dot [46].

Another version of such a single-electron device obeying (29) is shown in
Fig. 17a: By changing the gate voltages in time in the way sketched in Fig. 17c,
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Fig. 17. (a) Quantum Metrological Triangle. (b) Single-electron turnstile. (c) Single-
electron pump.

one electron is transferred within such a cycle via the islands from source and
drain. These phase-locked variations of the gate voltages decribe a path which
encircles one triple point in the charge stability diagram of Fig. 16. The two-
terminal arrangement of Fig. 17c behaves as a single-electron pump [47].

Two islands are enough to perform single-electron pumping. However, several
islands in series are required to obtain a high accuracy: Correlated tunneling (co-
tunneling) of electrons through the device has to be suppressed because such
processes lead to a leakage. Correlated electron tunneling is the topic of section
13. An accuracy of ∆IDS/IDS ≈ 10−8 has been achieved [48] in single-electron
pumps with seven islands in series, i.e., one electron is missed within 108 cycles.
Unfortunately the current which is driven through a single pump is too small (f
about few MHz) for allowing to close the quantum metrological triangle.



112 J. Weis

Another approach [49,50] uses surface acoustic waves (SAW) to confine elec-
trons which then have to pass – traveling with this SAW – a small contriction. In
another proposal, a certain amount of electrons is shuttled mechanically between
source and drain [51].

12 Single-Electron Devices as Primary Thermometer

One-dimensional arrays of M small metal islands of almost same size and tunnel
junctions offer at low temperature a pronounced nonlinear IDS(VDS) characte-
ristic which is rather similar to the one of the single-island arrangement shown
in Fig. 2. With increasing the temperature to T > EC/kB, thermal fluctuations
diminish the Coulomb blockade effect and the IDS(VDS) characteristic becomes
more and more linear with increasing T . The deviation is still seen close to
VDS = 0 which is better resolved by measuring the differential conductance
dIDS/dVDS as a function of VDS: As shown in Fig. 18, a dip is visible around
VDS = 0. Based on rate equations it can be shown [52,53] that the depth of the
dip scales like EC/3kBT , whereas the full-width V1/2 at half of the dip depth is
described by

e V1/2

(M + 1) kBT
= 5.439 · · · . (30)

This allows to use such an array as a primary thermometer since V1/2 does not
depend on the device parameters except of the number M of islands. It has
turned out that slight variations in the device parameters (island size and tun-
nel junction) do not significantly affect the validity of (30). Such thermometers
are nowadays commercially available products (from Nanoway, Finland). The
measurable temperature range depends on the single-electron charging energy
EC which can be designed by the junction and island size. Such single-electron
devices might be able to replace established temperature standards used at low

V1/2

k  T >B

1/2eV

k  TB

= (M+1) 5.439...

EC

VDS

dI/dV
DS

VDS

DRAINSOURCE

VDS

M Islands
IDS

Fig. 18. Primary thermometer.
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temperature, i.e., in the range of few milliKelvin to few tens of Kelvin. Two-
dimensional arrays of small islands show similar behaviour [53].

13 Breakdown of the Single-Electron Tunneling Picture

In the limit of weak tunnel coupling and at low but finite temperature, the dyna-
mics of single-electron transport is usually described by temperature-dependent
rate equations [15,21,54,18] revealing the basic features of Coulomb blockade and
single-electron tunneling. By this approach, only processes involving a tunneling
event of an electron through one of the barriers are taken into account. This does
not work in the case of strong tunnel coupling and – as pointed out in Sect. 14 –
sometimes even not in the weak tunnel coupling regime.

Besides thermally induced fluctuations in the number of electrons on the
island, quantum fluctuations occur and become stronger with increasing the
tunnel coupling to the lead electrodes. Simple examples for this are so-called
co-tunneling events (Fig. 19) [55]: An electron from one of the leads occupies
the island while at the same time another electron leaves the island to one of
the leads. Since the charge state on the island is not changed by this correlated
tunneling event, no single-electron charging energy has to be paid. Even in the
Coulomb blockade regime, this leads to a net current flow between source and
drain for |VDS| > 0. The charge state of the island is only virtually changed.
Under finite VDS bias, the electron system confined in the quantum dot can even
be excited by such correlated tunnel processes (inelastic cotunneling). Important

µS
elch

µD
elch

VDS

N+1

1
2

1

2

N+2
N+1

N−1

N+1

N

0

N−1

N

N−1

N

VGS

N

Drain
Source

Electron−Like Cotunneling

E(N,l) − E(N,0)
e

ε E(N+1,0) − E(N,0)

E(N+1,0) − E(N,l)

Hole−Like Cotunneling
E(N,0) − E(N−1,0)
E(N,l) − E(N−1,0)

Elastic Cotunneling
Inelastic Cotunneling

N+1
N+2

Onset of

Fig. 19. Cotunneling as the simplest correlated tunneling event: Adding an electron
while at the same time an electron leaves the island allows electron transport between
source and drain even in the Coulomb blockade regime. Transport channels due to
cotunneling open at positions in |VDS| > 0 (independent of VGS) which are given by the
energy difference leading to an excitation of electron system confined in the quantum
dot. Such an excitation in the quantum dot can also be taken away by cotunneling.



114 J. Weis

to note, transport channels due to correlated tunneling are opened at certain
threshold values of VDS, independent of VGS (see Fig. 19). This distinguishes
them from transport channels opened for single-electron transport. Opening such
a cotunneling channel leads to a step-like change in the differential conductance
dIDS/dVDS with increasing |VDS|. Elastic cotunneling, which uses the transition
between the groundstates |n, 0〉 and |n+1, 0〉 as the intermediate transition, can
already occur at VDS = 0.

This virtual occupation leads effectively to a broadening of the energy levels
depicted in the energy schemes for the quantum dot. Usually these correlated
tunneling processes can be treated as a small contribution. However, this is not
always true as shown in the following.

14 Kondo Effect in Single Quantum Dot Systems

Figure 20b shows the differential conductance dIDS/dVDS through a small quan-
tum dot (Fig. 20a) as a function of VDS and VGS. For the case of weak tunnel
coupling to both leads, the Coulomb blockade region is well resolved. With in-
creasing the tunnel coupling while keeping the temperature, the Coulomb block-
ade region is no longer well defined, but the remarkable feature is the appearance
of a peak in the differential conductance at VDS = 0 over the whole Coulomb
blockade regime [56–59]. It becomes stronger with increasing the tunnel cou-
pling, but disappears with increasing the temperature (Fig. 20c). It means that
the quantum dot is highly conductive at low temperature and less conductive
at high temperature. Important to note, the position of this zero-bias anomaly
remains unaffected by VGS, although the electronic states of the dot are shif-
ted by VGS, which indicates that the island is effectively not charged, i.e., that
correlated electron tunneling is here of importance. It has been observed [60]
that even the conductance 2e2/h is reached for this zero-bias anomaly. Zero-
bias anomalies are not observed for all Coulomb blockade regions, i.e., certain
requirements have to be fulfilled.

Predicted in 1988 [61,62] and experimentally demonstrated in 1998 [56], the
interpretation of this zero-bias anomaly is based in the simplest case on the
so-called Anderson impurity model [63]. The model has been used to describe
the Kondo effect observed at low temperature in the resistivity of metal slightly
doped with magnetic impurities. The (extended) Anderson impurity model is
depicted in Fig. 21: A spin-degenerate localized electron state is tunnel coupled
to two electron reservoirs. Its energy lies below the Fermi level of the reservoirs,
i.e., it is always occupied by an electron with spin-up or spin-down. Occupation
of the localized state by two electrons at the same time is suppressed due to the
electron-electron interaction U = 2EC on the island. Solving this problem, it
turns out that correlated electron tunneling of lowest order (cotunneling) is not
enough to descibe the transport through such an island: The electronic state of
the island hybridizes with the electronic states of the leads forming a spin-singlet
state, although the energy level of this localized state is deep below the Fermi
level of the reservoirs. At low temperature, even a small tunnel coupling to the
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Fig. 20. (a) Sketch of the experimental arrangement of a single quantum dot defined in
a two-dimensional electron system by electrostatic depletion. (b) Differential conduc-
tance as a function of the drain-source voltage and the gate voltage for different tunnel
coupling to the leads. A zero-bias anomaly – identified as a Kondo peak – develops
at VDS = 0 within the Coulomb blockade region. (c) Temperature dependence of the
Kondo peak taken in the middle of a Coulomb blockade region (from another sample).
(from J. Schmid et al., MPI-FKF)

leads causes correlated tunneling of electrons permanently flipping the spin state
of the island. This leads to an effective density of state on the site of the impurity
pinned to the Fermi level of the reservoirs (see Fig. 21). Electron transport is
possible around VDS = 0. The weaker the tunnel coupling and the deeper the
impurity level, the lower the temperature has to be to observe this Kondo effect.
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The reference scale is given by the so-called Kondo temperature TK

kBTK =
√
Γ U

2
exp

[
−π (εF − ε0) (U + ε0 − εF)

Γ U

]
(31)

where the energy Γ describes the broading of the energy level due to the tunnel
coupling of the impurity (quantum dot) state to the leads, and εF − ε0 the
energetical distance of the level on the impurity site to the Fermi level of the
reservoirs. A large U – basically given by the electron-electron interaction – and
large Γ enlarges the Kondo temperature, i.e., the Kondo effect is observed at
higher temperature.

Magnetic field dependent measurements reveal that spin-degeneracy usually
is responsible for the Kondo effect in quantum dot systems. Suggested by the
Constant Interaction Model, at the beginning the Kondo effect has been expected
only for an odd number of electron on the quantum dot (odd-even parity effect).



Single-Electron Devices 117

However, it can also be observed for even electron numbers [59,64,65]. The elec-
tronic structure of a quantum dot is more complex than assumed by the CIM.

15 Two Electrostatically Coupled Single-Electron
Transistors: More than the Sum of Two

The Anderson impurity model describes two separate electron systems labeled
by an index which is usually identified with the spin quantum number (see
Fig. 22a). The only interaction between both ‘spin’ electron systems happens
on the impurity (quantum dot) site: Occupation by two electrons at the same
time is suppressed due to the Coulomb interaction on this site. Interpreting the
‘spin’ index of the Anderson impurity model as the index distinguishing between
two spatially separated electron systems, another realization of the Anderson
impurity model becomes feasible [66]: a system consisting of electrostatically
coupled quantum dots with separate leads to each quantum dot (see Fig. 22a).
The mapping works [66] if (1) an energetical degeneracy is present in occupying
either the upper or the lower quantum dot, (2) the groundstate of each quantum
dot is not degenerate, excited states are energetically well separated.

An experimental setup to implement this arrangement is shown in Fig. 22b:
By etching the pattern shown as an SEM image into a GaAs-AlGaAs hetero-
structure containing two 2DESs separated by a insulating 40 nm thick AlGaAs
barrier, two strongly electrostatically coupled quantum dots are formed. By al-
loying metal contacts and by using top and back gates for locally depleting the
upper or lower 2DES, the quantum dots are separately contacted.

In Fig. 22c, the conductance through the upper quantum dot is shown as
a function of the gate voltages V1,2 and VG (see Fig. 22b). A honeycomb-like
structure is visible which reflects strong electrostatic interaction between both
quantum dots. Along the lines marked by ‘a’, single-electron tunneling occurs
through the upper quantum dot. Along the lines marked by ‘c’, single-electron
fluctuations are possible for the lower quantum dot, but not visible in the current
through the upper quantum dot. Along the lines marked by ‘b’, current through
the upper quantum dot is detected – although not expected within the single-
electron tunneling picture for electrostatically coupled quantum dots. Along such
lines, an energy degeneracy of having an additional electron either on the upper
or lower quantum dot exists – one prerequisite of the Anderson model. Due to the
predictions for the Anderson model, we expect to see a peak in the differential
conductance versus drain-source voltage at the positions along the lines marked
by ‘b’. Such a trace taken in the middle of a line ‘b’ is shown in Fig. 22d. The
observed peak indicates [67] that a simple co-tunneling process – adding an
electron in the upper quantum dot while at the same time taking off an electron
from the lower quantum dot (and vice versa) – is not enough to explain the
electron transport. Correlated tunneling processes of higher order have to be
taken into account – Kondo physics is present.

In conclusion, closely packed single-electron transistors with atom-like islands
might show not only electrostatic interaction but might form also a correlated
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quantum mechanical state making them highly conductive in the regime where
at higher temperature (beyond the Kondo temperature of the arrangement)
Coulomb blockade is observed.
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