Quantum Dots

GaAs vertical dot

GaAs lateral dot

carbon nanotube / nanowires

metallic SET

Skalierbarer Quantencomputer Loss – DiVincenzo Vision (1998)

device: Daniel Biesinger, Dario Maradan (Basel)

Part 1: Quantum Dot Basics

- GaAs 2D electron gas (2DEG) conductance quantization in QPCs
- Coulomb blockade and charging energy $E_c = e^2/C$ quantum confinement energy Δ
- Constant interaction model and Coulomb diamonds
- electronic transport via
 - sequential tunneling Γ
 - cotunneling Γ^2 / E_c (elastic / inelastic)
 - cotunneling assisted sequential tunneling
- singlet & triplet states, exchange splitting $J = E_T - E_S$
- Pauli Spin blockade

next week:	part 2	putting the basics to work
		g-factor, ST transition, spin entanglement
	part 3	charge sensing
		charge & spin tunneling,
		spin relaxation, charge fluctuations

density n = 2 x 10^{11} cm⁻² mobility $\mu \sim 200'000$ cm²/(Vs) Fermi wavelength $\lambda_F \sim 50$ nm mean free path ~ micron

J. Zimmerman and A. C. Gossard, UC Santa Barbara C. Reichl and W. Wegscheider, ETHZ

Lateral Depletion Gating, Ohmic Contacts

Quantum Point Contact (QPC)

$$\begin{bmatrix} \frac{\hbar^2 k^2}{2m^*} + \frac{p_y^2}{2m^*} + \frac{1}{2}m^*\omega_0^2 y^2 \end{bmatrix} \chi(y) = \chi(y)$$

$$\chi_{n,k}(y) = u_n(q) \quad \text{where} \quad q = \sqrt{m^*\omega_0/\hbar} y$$

Conductance Quantization in 1D (QPC)

$$I = e \sum_{n=1}^{N} \int_{\mu_d}^{\mu_s} dE \frac{1}{2} \rho_n(E) v_n(E) T_n(E),$$

$$I = e \sum_{n=1}^{N} \int_{\mu_d}^{\mu_s} dE \frac{1}{2} \frac{2}{\pi} \left(\frac{\partial E_n}{\partial k_x}\right)^{-1} \frac{1}{\hbar} \frac{\partial E_n}{\partial k_x} T_n(E_F)$$

$$G = \frac{2e^2}{h} \sum_{n=1}^{N} T_n(E_F)$$
 $G = \frac{2e^2}{h} N,$

Conductance Quantization in 1D (QPC)

factor 2: spin degeneracy, $E_Z = g \mu_B B = 25 \mu eV/T B$ with |g| = 0.44 GaAs

Forming a Quantum Dot

Device Integration

gate defined dots

- A,B,C : control quantum point contacts transmission to reservoirs
- 1,2,3: control confinement potential / energy levels only
- X control dot-internal tunneling rate

Quantum Dot Basics

- GaAs 2D electron gas (2DEG) conductance quantization in QPCs
- Coulomb blockade and charging energy $E_c = e^2/C$ quantum confinement energy Δ
- Constant interaction model and Coulomb diamonds
- electronic transport via
 - sequential tunneling Γ
 - cotunneling Γ^2 / E_c (elastic / inelastic)
 - cotunneling assisted sequential tunneling
- singlet &triplet states, exchange splitting J = $E_T - E_S < \Delta$ (interactions)
- Pauli Spin blockade

Open vs. Closed

Open Dot

 $\cdot V_{gate}$ set to allow $\geq 2e^2/h$ conductance through each point contact

·Dot is well-connected to reservoirs

•Transport measurements exhibit CF and Weak Localization

Closed Dot

 $\cdot V_{\text{gate}}$ set to require tunnelling across point contacts

•Dot is isolated from reservoirs, contains discrete energy levels

•Transport measurements exhibit Coulomb Blockade

Electrostatic Energy

apply voltages

what is potential on dot?

voltage divider...

 $V_{dot} = \sum_{i} \alpha_i V_i$

 $\alpha_i = \frac{C_i}{C_{\Sigma}}$

can use V_q to shift dot energy!!

Coulomb Blockade in Closed Dots (SET)

Finite energy $E_c = e^2/C_{dot}$ is needed to add an additional electron to the dot. When kT<<E_c charging blocks conduction in valleys.

Charging Energy

capacitance of dot to world = C total energy U stored in C $U = \int_0^Q V dq = \int_0^Q \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C}$

Incremental E to add one electron

Confinement Energy

harmonic potential

complicated potential

Quantum Dot Basics

- GaAs 2D electron gas (2DEG) conductance quantization in QPCs
- Coulomb blockade and charging energy $E_C = e^2/C$ quantum confinement energy Δ
- Constant interaction model and Coulomb diamonds
- electronic transport via
 - sequential tunneling Γ
 - cotunneling Γ^2 / E_c (elastic / inelastic)
 - cotunneling assisted sequential tunneling
- singlet &triplet states, exchange splitting J = $E_T - E_S < \Delta$ (interactions)
- Pauli Spin blockade

Capacitor Model

$$E(N) = \left[Q_{tot}\right]^2 / (2C_{\Sigma}) + \sum_{k=1}^{N} \epsilon_k \qquad \text{total dot energy}$$

$$E(N) = \left[e(N - N_0) - \sum_{k=1}^N C_k V_k \right]^2 / (2C_{\Sigma}) + \sum_{k=1}^N \epsilon_k$$

offset charge

Constant Interaction Model

$$E_{i} = \sum_{k=1}^{N} q_{k} \phi_{k}$$

$$q_{k} = -e$$

$$\phi_{k} : \text{ interaction of electron k with rest}$$

$$constant inteaction: model \phi_{k} \text{ with } C_{\Sigma}$$

$$\phi_{k} = -(k-1)e/C_{\Sigma}$$

$$E_{i} = \frac{e^{2}}{C_{\Sigma}} \sum_{k=1}^{N} (k-1)$$

$$= \frac{N(N-1)e^{2}}{2C_{\Sigma}}$$

$$\begin{split} E(N) &= E_{\rm QM} + E_i + E_e & \text{total dot energy} \\ &= \sum_{n=1}^N \epsilon_n + \frac{N(N-1)e^2}{2C_{\Sigma}} - Ne \sum_{i=1}^6 \alpha_i V_i \end{split}$$

$$\mu_{\rm dot}(N) \equiv E(N) - E(N-1)$$

 μ =0: change N current flows

energy at which an electron can be added

constant interaction model:

$$\mu_{dot}(N) = \epsilon_N + (N-1)\frac{e^2}{C} - e\sum_i \alpha_i V_i$$

addition energy

$$(\mu_{\text{dot}}(N+1) - \mu_{\text{dot}}(N))|_{\text{fixed } V_i}$$

Temperature Regimes

$$\Delta, \, \frac{e^2}{C} \ll kT$$

no charging effects, no Coulomb blockade

1

$$g_{\infty} = \left(\frac{1}{g_L} + \frac{1}{g_R}\right)^-$$

$$\Gamma, \Delta \ll kT \ll \frac{e^2}{C}$$

classical Coulomb blockade (metallic CB) temperature broadened transport through several quantum dot energy levels

$$g \sim \frac{g_{\infty}}{2} \cosh^{-2}\left(\frac{\epsilon}{2.5kT}\right)$$

peak conductance idependent of T FWHM ~ 4.35kT

 $\Gamma = \Gamma_{L} + \Gamma_{R}$

escape broadening (tunneling rates)

Beenakker, PRB44, 1646 (1991)

Temperature Regimes

$$\Gamma \ll kT \ll \Delta \ll \frac{e^2}{C}$$

quantum Coulomb blockade temperature broadened regime resonant tunneling transport through only one dot level

$$g \sim \frac{e^2}{h} \frac{\gamma}{4kT} \cosh^{-2}\left(\frac{\epsilon}{2kT}\right)$$

peak conductance 1/T FWHM ~ 3.5kT

g

$$=\frac{\Gamma_L\Gamma_R}{\Gamma_L+\Gamma_R}$$

quantum Coulomb blockade lifetime broadened regime transport through only one dot level

$$_{BW} \sim \frac{e^2}{h} \frac{\gamma \Gamma}{(\epsilon/\hbar)^2 + (\Gamma/2)^2}$$

peak conductance e^2/h indep. of T FWHM ~ Γ

Beenakker, PRB44, 1646 (1991)

Temperature Dependence: Theory

Temperature Dependence: Experiment

Foxman et al., PRB50, 14193 (1994)

Line Shapes: Experiments

Foxman et al., PRB47, 10020 (1993)

Coulomb Diamonds

Coulomb Diamonds

two slopes, each associated with its respective dot-lead capacitance

Quantum Dot Basics

- GaAs 2D electron gas (2DEG) conductance quantization in QPCs
- Coulomb blockade and charging energy $E_c = e^2/C$ quantum confinement energy Δ
- Constant interaction model and Coulomb diamonds
- electronic transport via
 - sequential tunneling Γ
 - cotunneling Γ^2 / E_c (elastic / inelastic)
 - cotunneling assisted sequential tunneling
- singlet &triplet states, exchange splitting J = $E_T - E_S < \Delta$ (interactions)
- Pauli Spin blockade

Fundamental Quantum Dot Transport Mechanisms

electron transport

- sequential tunneling
- cotunneling elastic
 - inelastic
- cotunneling assisted sequential tunneling (CAST)

Ground State Sequential Tunneling Transport

Excited State Sequential Tunneling Transport

one electron states

harmonic oscillator

Sequential Tunneling Transport

only one excess electron can be on dot (charging energy)

Cotunneling: elastic / inelastic

Quantum Dot Basics

- GaAs 2D electron gas (2DEG) conductance quantization in QPCs
- Coulomb blockade and charging energy $E_c = e^2/C$ quantum confinement energy Δ
- Constant interaction model and Coulomb diamonds
- electronic transport via
 - sequential tunneling $\boldsymbol{\Gamma}$
 - cotunneling Γ^2 / E_c (elastic / inelastic)
 - cotunneling assisted sequential tunneling
- singlet &triplet states, exchange splitting J = E_T – E_S < ∆ (interactions)
- Pauli Spin blockade

many electron dot Schleser et al., PRL 2005

Magnetic Field Dependence

Temperature dependence

Shift of Cotunneling Assisted Peak Position with Temperature

peak moves lineary with temperature, as expected for CAST

$$\Delta \epsilon \sim kT \ln \left[\frac{J\Gamma_L^{-1}}{(1+\eta/2)} \right] \qquad \qquad \text{for} \quad T \ll T_0 = \frac{k^{-1}J}{\ln(J/\Gamma_L)} \sim 2 \,\mathrm{K}$$

Golovach & Loss, PRB 69, 245327 (2004)

Part 1: Quantum Dot Basics

- GaAs 2D electron gas (2DEG) conductance quantization in QPCs
- Coulomb blockade and charging energy E_C = e^2/C quantum confinement energy Δ
- Constant interaction model and Coulomb diamonds
- electronic transport via
 - sequential tunneling Γ
 - cotunneling Γ^2 / E_c (elastic / inelastic)
 - cotunneling assisted sequential tunneling
- singlet & triplet states, exchange splitting $J = E_T - E_S$
- Pauli Spin blockade
- part 2 putting the basics to work g-factor, ST transition, spin entanglement
- part 3 charge sensing charge & spin tunneling, spin relaxation, charge fluctuations