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The so-called Klein paradox—unimpeded penetration

of relativistic particles through high and wide potential

barriers—is one of the most exotic and counterintuitive

consequences of quantum electrodynamics. The

phenomenon is discussed in many contexts in particle,

nuclear and astro-physics but direct tests of the Klein

paradox using elementary particles have so far proved

impossible. Here we show that the effect can be tested in

a conceptually simple condensed-matter experiment using

electrostatic barriers in single- and bi-layer graphene.

Owing to the chiral nature of their quasiparticles, quantum

tunnelling in these materials becomes highly anisotropic,

qualitatively different from the case of normal, non-

relativistic electrons. Massless Dirac fermions in graphene

allow a close realization of Klein’s gedanken experiment,

whereas massive chiral fermions in bilayer graphene offer

an interesting complementary system that elucidates the

basic physics involved.

The term Klein paradox1–7 refers to a counterintuitive relativistic
process in which an incoming electron starts penetrating
through a potential barrier if its height, V0, exceeds the

electron’s rest energy, mc2 (where m is the electron mass and c
is the speed of light). In this case, the transmission probability,
T , depends only weakly on the barrier height, approaching the
perfect transparency for very high barriers, in stark contrast to
the conventional, non-relativistic tunnelling where T exponentially
decays with increasing V0. This relativistic effect can be attributed
to the fact that a sufficiently strong potential, being repulsive
for electrons, is attractive for positrons and results in positron
states inside the barrier, which align in energy with the electron
continuum outside4–6. Matching between electron and positron
wavefunctions across the barrier leads to the high-probability
tunnelling described by the Klein paradox7. The essential feature
of quantum electrodynamics (QED) responsible for the effect is
the fact that states at positive and negative energies (electrons
and positrons) are intimately linked (conjugated), being described
by different components of the same spinor wavefunction. This
fundamental property of the Dirac equation is often referred to
as the charge-conjugation symmetry. Although Klein’s gedanken
experiment is now well understood, the notion of paradox is still
widely used2–7, perhaps because the effect has never been observed
experimentally. Indeed, its observation requires a potential drop
of ≈mc2 over the Compton length h̄/mc, which yields enormous
electric fields2,3 (ε > 1016 V cm−1) and makes the effect relevant
only for such exotic situations as, for example, positron production
around super-heavy nuclei2,3 with charge Z ≥ 170 or evaporation
of black holes through generation of particle–antiparticle pairs
near the event horizon8. The purpose of this paper is to show
that graphene—a recently found allotrope of carbon9—provides
an effective medium (‘vacuum’) where relativistic quantum
tunnelling described by the Klein paradox and other relevant QED
phenomena can be tested experimentally.

DIRAC-LIKE QUASIPARTICLES IN GRAPHENE

Graphene is a single layer of carbon atoms densely packed in a
honeycomb lattice, or it can be viewed as an individual atomic
plane pulled out of bulk graphite. From the point of view of
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Figure 1 Tunnelling through a potential barrier in graphene. a, Schematic
diagrams of the spectrum of quasiparticles in single-layer graphene. The spectrum
is linear at low Fermi energies (<1 eV). The red and green curves emphasize the
origin of the linear spectrum, which is the crossing between the energy bands
associated with crystal sublattices A and B. b, Potential barrier of height V0 and
width D. The three diagrams in a schematically show the positions of the Fermi
energy E across such a barrier. The Fermi level (dotted lines) lies in the conduction
band outside the barrier and the valence band inside it. The blue filled areas indicate
occupied states. The pseudospin denoted by vector σ is parallel (antiparallel) to the
direction of motion of electrons (holes), which also means that σ keeps a fixed
direction along the red and green branches of the electronic spectrum.
c, Low-energy spectrum for quasiparticles in bilayer graphene. The spectrum is
isotropic and, despite its parabolicity, also originates from the intersection of energy
bands formed by equivalent sublattices, which ensures charge conjugation, similar
to the case of single-layer graphene.

its electronic properties, graphene is a two-dimensional zero-gap
semiconductor with the energy spectrum shown in Fig. 1a, and its
low-energy quasiparticles are formally described by the Dirac-like
hamiltonian10–12

Ĥ0 = −ih̄vFσ∇, (1)

where vF ≈ 106 m s−1 is the Fermi velocity and σ = (σx , σy)
are the Pauli matrices. Neglecting many-body effects, this
description is accurate theoretically10–12 and has also been proved
experimentally13,14 by measuring the energy-dependent cyclotron
mass in graphene (which yields its linear energy spectrum) and,
most clearly, by the observation of a relativistic analogue of the
integer quantum Hall effect.

The fact that charge carriers in graphene are described by
the Dirac-like equation (1), rather than the usual Schrödinger
equation, can be seen as a consequence of graphene’s crystal
structure, which consists of two equivalent carbon sublattices10–12,
A and B. Quantum mechanical hopping between the sublattices
leads to the formation of two cosine-like energy bands, and their

intersection near the edges of the Brillouin zone (shown in red
and green in Fig. 1a) yields the conical energy spectrum. As a
result, quasiparticles in graphene exhibit the linear dispersion
relation E = h̄kvF, as if they were massless relativistic particles with
momentum k (for example, photons) but the role of the speed of
light is played here by the Fermi velocity vF ≈ c/300. Owing to
the linear spectrum, it is expected that graphene’s quasiparticles
will behave differently from those in conventional metals and
semiconductors where the energy spectrum can be approximated
by a parabolic (free-electron-like) dispersion relation.

Although the linear spectrum is important, it is not the
only essential feature that underpins the description of quantum
transport in graphene by the Dirac equation. Above zero
energy, the current carrying states in graphene are, as usual,
electron-like and negatively charged. At negative energies, if
the valence band is not full, its unoccupied electronic states
behave as positively charged quasiparticles (holes), which are
often viewed as a condensed-matter equivalent of positrons. Note,
however, that electrons and holes in condensed-matter physics
are normally described by separate Schrödinger equations, which
are not in any way connected (as a consequence of the Seitz
sum rule15, the equations should also involve different effective
masses). In contrast, electron and hole states in graphene are
interconnected, exhibiting properties analogous to the charge-
conjugation symmetry in QED10–12. For the case of graphene, the
latter symmetry is a consequence of its crystal symmetry because
graphene’s quasiparticles have to be described by two-component
wavefunctions, which are needed to define relative contributions of
sublattices A and B in quasiparticles’ make-up. The two-component
description for graphene is very similar to the one by spinor
wavefunctions in QED, but the ‘spin’ index for graphene indicates
sublattices rather than the real spin of electrons and is usually
referred to as pseudospin σ.

There are further analogies with QED. The conical spectrum
of graphene is the result of intersection of the energy bands
originating from sublattices A and B (see Fig. 1a) and, accordingly,
an electron with energy E propagating in the positive direction
originates from the same branch of the electronic spectrum (shown
in red) as the hole with energy −E propagating in the opposite
direction. This yields that electrons and holes belonging to the
same branch have pseudospin σ pointing in the same direction,
which is parallel to the momentum for electrons and antiparallel for
holes (see Fig. 1a). This allows the introduction of chirality12, that
is formally a projection of pseudospin on the direction of motion,
which is positive and negative for electrons and holes, respectively.
The term chirality is often used to refer to the additional built-in
symmetry between electron and hole parts of graphene’s spectrum
(as indicated by colour in Fig. 1) and is analogous (although not
completely identical11,16) to the chirality in three-dimensional QED.

KLEIN PARADOX REFORMULATED FOR SINGLE-LAYER GRAPHENE

Because quasiparticles in graphene accurately mimic Dirac
fermions in QED, this condensed-matter system makes it possible
to set up a tunnelling experiment similar to that analysed by Klein.
The general scheme of such an experiment is shown in Fig. 1, where
we consider the potential barrier that has a rectangular shape and is
infinite along the y axis:

V (x) =
{

V0, 0 < x < D,
0 otherwise.

(2)

This local potential barrier of width D inverts charge carriers
underneath it, creating holes playing the role of positrons, or
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Figure 2 Klein-like quantum tunnelling in graphene systems. a,b, Transmission probability T through a 100-nm-wide barrier as a function of the incident angle for
single- (a) and bi-layer (b) graphene. The electron concentration n outside the barrier is chosen as 0.5×1012 cm−2 for all cases. Inside the barrier, hole concentrations p are
1×1012 and 3×1012 cm−2 for red and blue curves, respectively (such concentrations are most typical in experiments with graphene). This corresponds to the Fermi energy
E of incident electrons ≈80 and 17 meV for single- and bi-layer graphene, respectively, and l ≈ 50 nm. The barrier heights V0 are (a) 200 and (b) 50 meV (red curves) and
(a) 285 and (b) 100 meV (blue curves).

vice versa. For simplicity, we assume in (2) infinitely sharp edges,
which allows a direct link to the case usually considered in QED1–7.
The sharp-edge assumption is justified if the Fermi wavelength,
l, of quasiparticles is much larger than the characteristic width
of the edge smearing, which in turn should be larger than the
lattice constant (to disallow Umklapp scattering between different
valleys in graphene)17. Such a barrier can be created by the
electric field effect using a thin insulator or by local chemical
doping9,13,14. Importantly, Dirac fermions in graphene are massless
and, therefore, there is no formal theoretical requirement for
the minimal electric field, ε, to form positron-like states under
the barrier. To create a well-defined barrier in realistic graphene
samples with a disorder, fields ε ≈ 105 V cm−1 routinely used in
experiments9,14 should be sufficient, which is eleven orders of
magnitude lower than the fields necessary for the observation of
the Klein paradox for elementary particles.

It is straightforward to solve the tunnelling problem shown in
Fig. 1b. We assume that the incident electron wave propagates at an
angle φ with respect to the x axis and then try the components of
the Dirac spinor ψ1 and ψ2 for the hamiltonian H = H0 +V (x) in
the following form:

ψ1(x,y) =
⎧⎨
⎩

(eikx x + re−ikx x)eiky y , x < 0,

(aeiqx x +be−iqx x)eiky y , 0 < x < D,

teikx x+iky y , x > D,

ψ2(x,y) =
⎧⎨
⎩

s(eikx x+iφ − re−ikx x−iφ)eiky y , x < 0,

s′(aeiqx x+iθ −be−iqx x−iθ )eiky y , 0 < x < D,

steikx x+iky y+iφ, x > D,

where kF = 2π/l is the Fermi wavevector, kx = kF cos φ and
ky = kF sinφ are the wavevector components outside the barrier,

qx =
√

(E −V0)2/h̄2v2
F − k2

y , θ = tan−1(ky/qx) is the refraction

angle, s = sgn E and s′ = sgn(E − V0). Requiring the continuity of
the wavefunction by matching up coefficients a,b, t , r, we find the
following expression for the reflection coefficient r

r = 2ieiφ sin(qx D)

× sinφ− ss′ sinθ

ss′[e−iqx D cos(φ+ θ)+eiqx D cos(φ− θ)]−2isin(qx D)
.

(3)

Figure 2a shows examples of the angular dependence of
transmission probability T = |t|2 = 1 − |r|2 calculated using the
above expression. In the limit of high barriers |V0| � |E|, the
expression for T can be simplified to

T = cos2 φ

1−cos2(qx D)sin2 φ
. (4)

Equations (3) and (4) yield that under resonance conditions
qx D =πN , N =0,±1,. . . the barrier becomes transparent (T =1).
More significantly, however, the barrier always remains perfectly
transparent for angles close to the normal incidence φ = 0. The
latter is the feature unique to massless Dirac fermions and is
directly related to the Klein paradox in QED. This perfect tunnelling
can be understood in terms of the conservation of pseudospin.
Indeed, in the absence of pseudospin-flip processes (such processes
are rare as they require a short-range potential, which would act
differently on A and B sites of the graphene lattice), an electron
moving to the right can be scattered only to a right-moving electron
state or left-moving hole state. This is shown in Fig. 1a, where
charge carriers from the ‘red’ branch of the band diagram can
be scattered into states within the same ‘red’ branch but cannot
be transformed into any state on the ‘green’ branch. The latter
scattering event would require the pseudospin to be flipped. The
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matching between directions of pseudospin σ for quasiparticles
inside and outside the barrier results in perfect tunnelling. In the
strictly one-dimensional case, such perfect transmission of Dirac
fermions has been discussed in the context of electron transport in
carbon nanotubes17,18 (see also ref. 19). Our analysis extends this
tunnelling problem to the two-dimensional (2D) case of graphene.

CHIRAL TUNNELLING IN BILAYER GRAPHENE

To elucidate which features of the anomalous tunnelling in
graphene are related to the linear dispersion and which features
are related to the pseudospin and chirality of the Dirac spectrum,
it is instructive to consider the same problem for bilayer
graphene. There are differences and similarities between the two
graphene systems. Indeed, charge carriers in bilayer graphene
have a parabolic energy spectrum as shown in Fig. 1c, which
means they are massive quasiparticles with a finite density of
states at zero energy, similar to conventional non-relativistic
electrons. On the other hand, these quasiparticles are also chiral
and described by spinor wavefunctions20,21, similar to relativistic
particles or quasiparticles in single-layer graphene. Again, the
origin of the unusual energy spectrum can be traced to the
crystal lattice of bilayer graphene with four equivalent sublattices21.
Although ‘massive chiral fermions’ do not exist in the field
theory, their existence in condensed-matter physics (confirmed
experimentally20) offers a unique opportunity to clarify the
importance of chirality in the relativistic tunnelling problem
described by the Klein paradox. In addition, the relevant QED-like
effects seem to be more pronounced in bilayer graphene and easier
to test experimentally, as discussed below.

Charge carriers in bilayer graphene are described by an off-
diagonal hamiltonian20,21

Ĥ0 = − h̄2

2m

(
0 (kx − iky)

2

(kx + iky)
2 0

)
(5)

which yields a gapless semiconductor with chiral electrons and
holes with a finite mass m. An important formal difference between
the tunnelling problems for single- and bi-layer graphene is that in
the latter case there are four possible solutions for a given energy
E = ±h̄2k2

F/2m. Two of them correspond to propagating waves
and the other two to evanescent waves. Accordingly, for constant
potential Vi, eigenstates of hamiltonian (5) should be written as

ψ1(x,y) = (aie
ikix x +bie

−ikix x + cie
κix x +die

−κix x)eiky x

ψ2(x,y) = si

(
aie

ikix x+2iφi +bie
−ikix x−2iφi − ci hie

κix x − di

hi

e−κix x

)
eiky y

where

si = sgn (Vi −E); h̄kix = √
2m|E −Vi|cosφi;

h̄kiy = √
2m|E −Vi|sinφi

κix =
√

k2
ix +2k2

iy; hi =
(√

1+ sin2 φi − sinφi

)2

.

To find the transmission coefficient through barrier (2), we
should set d1 = 0 for x < 0, b3 = c3 = 0 for x > D and satisfy the
continuity conditions for both components of the wavefunction
and their derivatives. For the case of an electron beam that is
incident normally (φ = 0) and low barriers V0 < E (over-barrier
transmission), we obtain ψ1 = −ψ2 both outside and inside the
barrier, and the chirality of fermions in bilayer graphene does not

0 10 20 30 40 50
0

0.2
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D (nm)

T

Figure 3 Chiral versus non-chiral tunnelling. Transmission probability T for
normally incident electrons in single- and bi-layer graphene (red and blue curves,
respectively) and in a non-chiral zero-gap semiconductor (green curve) as a function
of width D of the tunnel barrier. Concentrations of charge carriers are chosen as
n= 0.5×1012 cm−2 and p= 1×1013 cm−2 outside and inside the barrier,
respectively, for all three cases. This yields barrier heights of ∼450meV for
graphene and ∼240meV for the other two materials. Note that the transmission
probability for bilayer graphene decays exponentially with the barrier width, even
though there are plenty of electronic states inside the barrier.

manifest itself. In this case, scattering at the barrier (2) is the same
as for electrons described by the Schrödinger equation. However,
for any finite φ (even in the case V0 < E), waves localized at the
barrier interfaces are essential to satisfy the boundary conditions.

The most intriguing behaviour is found for V0 > E, where
electrons outside the barrier transform into holes inside it, or
vice versa. Examples of the angular dependence of T in bilayer
graphene are plotted in Fig. 2b. They show a dramatic difference
compared with the case of massless Dirac fermions. There are
again pronounced transmission resonances at some incident angles,
where T approaches unity. However, instead of the perfect
transmission found for normally incident Dirac fermions (see
Fig. 2a), our numerical analysis has yielded the opposite effect:
massive chiral fermions are always perfectly reflected for angles
close to φ = 0.

Accordingly, we have analysed this case in more detail and
found the following analytical solution for the transmission
coefficient t :

t = 4ik1k2

(k2 + ik1)2e−k2 D − (k2 − ik1)2ek2 D
, (6)

where subscripts 1 and 2 label the regions outside and inside
the barrier, respectively. The case of a potential step, which
corresponds to a single p–n junction, is particularly interesting.
Equation (6) shows that such a junction should completely reflect
a normally incident beam (T = 0). This is highly unusual because
the continuum of electronic states at the other side of the step is
normally expected to allow some tunnelling. Furthermore, for a
single p–n junction with V0 � E, the following analytical solution
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for any φ has been found:

T = E

V0

sin2(2φ) (7)

which again yields T = 0 for φ = 0. This behaviour is in
obvious contrast to single-layer graphene, where normally incident
electrons are always perfectly transmitted.

The perfect reflection (instead of the perfect transmission) can
be viewed as another incarnation of the Klein paradox, because the
effect is again due to the charge-conjugation symmetry (fermions
in single- and bi-layer graphene exhibit chiralities that resemble
those associated with spin 1/2 and 1, respectively)20,21. For single-
layer graphene, an electron wavefunction at the barrier interface
perfectly matches the corresponding wavefunction for a hole with
the same direction of pseudospin (see Fig. 1a), yielding T = 1. In
contrast, for bilayer graphene, the charge conjugation requires a
propagating electron with wavevector k to transform into a hole
with wavevector ik (rather than −k), which is an evanescent wave
inside a barrier.

COMPARISON WITH TUNNELLING OF NON-CHIRAL PARTICLES

For completeness, we compare the results obtained with the case
of normal electrons. If a tunnel barrier contains no electronic
states, the difference is obvious: the transmission probability in this
case is known to decay exponentially with increasing barrier width
and height22 so that the tunnel barriers discussed above would
reflect electrons completely. However, both graphene systems are
gapless, and it is more appropriate to compare them with gapless
semiconductors with non-chiral charge carriers (such a situation
can be realized in certain heterostructures23,24). In this case, we find

t = 4kx qx

(qx + kx)2e−iqx D − (qx − kx)2eiqx D
,

where kx and qx are x-components of the wavevector outside
and inside the barrier, respectively. Again, similar to the case
of single- and bi-layer graphene, there are resonance conditions
qx D = πN ,N = 0,±1, . . . at which the barrier is transparent. For
the case of normal incidence (φ = 0), the tunnelling coefficient
is then an oscillating function of tunnelling parameters and can
exhibit any value from 0 to 1 (see Fig. 3). This is in contrast
to graphene, where T is always 1, and bilayer graphene, where
T = 0 for sufficiently wide barriers D > l. This makes it clear that
the drastic difference between the three cases is essentially due to
different chiralities or pseudospins of the quasiparticles involved
rather than any other feature of their energy spectra.

IMPLICATIONS FOR EXPERIMENT

The tunnelling anomalies found in the two graphene systems are
expected to play an important role in their transport properties,
especially in the regime of low carrier concentrations, where
disorder induces significant potential barriers and the systems
are likely to split into a random distribution of p–n junctions.
In conventional 2D systems, strong enough disorder results in
electronic states that are separated by barriers with exponentially
small transparency25,26. This is known to lead to the Anderson
localization. In contrast, in both graphene materials all potential
barriers are relatively transparent (T ≈ 1 at least for some angles)
which does not allow charge carriers to be confined by potential
barriers that are smooth on the atomic scale. Therefore, different
electron and hole ‘puddles’ induced by disorder are not isolated
but effectively percolate, thereby suppressing localization. This

 φ

a

b

D

Figure 4 The chiral nature of quasiparticles in graphene strongly affects its
transport properties. a, A diffusive conductor of a size smaller than the
phase-coherence length is connected to two parallel one-dimensional leads. For
normal electrons, transmission probability T through such a system depends
strongly on the distribution of scatterers. In contrast, for massless Dirac fermions,
T is always equal to unity due to the additional memory about the initial direction of
pseudospin (see text). b, Schematic diagram of one of the possible tunnelling
experiments in graphene. Graphene (light blue) has two local gates (dark blue) that
create potential barriers of a variable height. The voltage drop across the barriers is
measured by using potential contacts shown in orange.

consideration can be important for the understanding of the
minimal conductivity ≈e2/h observed experimentally in both
single-layer13 and bilayer20 graphene.

To further elucidate the dramatic difference between quantum
transport of Dirac fermions in graphene and normal 2D
electrons, Fig. 4a suggests a gedanken experiment where a diffusive
conductor is attached to ballistic one-dimensional leads, as in the
Landauer formalism. For conventional 2D systems, transmission
and reflection coefficients through such a conductor are sensitive to
detailed distribution of impurities and a shift of a single impurity by
a distance of the order of l can completely change the coefficients27.
In contrast, the conservation of pseudospin in graphene strictly
forbids backscattering and makes the disordered region in Fig. 4a
always completely transparent, independent of disorder (as long
as it is smooth on the scale of the lattice constant17). This
extension of the Klein problem to the case of a random scalar
potential has been proved by using the Lippmann–Schwinger
equation (see the Supplementary Information). Unfortunately, this
particular experiment is probably impossible to realize in practice
because scattering at graphene’s edges does not conserve the
pseudospin17,28. Nevertheless, the above consideration shows that
impurity scattering in the bulk of graphene should be suppressed
compared with that of normal conductors.

The above analysis shows that the Klein paradox and associated
relativistic-like phenomena can be tested experimentally using
graphene devices. The basic principle behind such experiments
would be to use local gates and collimators similar to those used
in electron optics in 2D gases29,30. One possible experimental setup
is shown schematically in Fig. 4b. Here, local gates simply cross
the whole graphene sample at different angles (for example, 90◦
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and 45◦). Intrinsic concentrations of charge carriers are usually
low (∼1011 cm−2), whereas concentrations up to 1×1013 cm−2 can
be induced under the gated regions by the bipolar electric field
effect9. This allows potential barriers with heights up to V0 ≈0.4 eV
and ≈0.23 eV for single- and double-layer samples, respectively.
By measuring the voltage drop across the barriers as a function
of applied gate voltage, their transparency for different V0 can be
analysed. Figure 2 shows that for graphene the 90◦ barrier should
exhibit low resistance and no significant change in resistance with
changing gate voltage. In comparison, the 45◦ barrier is expected
to have much higher resistance and show a number of tunnelling
resonances as a function of gate voltage. The situation should be
qualitatively different for bilayer graphene, where local barriers
should result in a high resistance for the perpendicular barrier and
pronounced resonances for the 45◦ barrier.

Furthermore, the fact that a barrier (or even a single p–n
junction) incorporated in a bilayer graphene device should lead
to exponentially small tunnelling current can be exploited in
developing graphene-based field effect transistors (FET). Such
transistors are particularly promising because of their high mobility
and ballistic transport at submicron distances9,13,14. However, the
fundamental problem along this route is that the conducting
channel in single-layer graphene cannot be pinched off (because of
the minimal conductivity), which severely limits achievable on–off
ratios for such FETs (ref. 9) and, therefore, the scope for their
applications. A bilayer FET with a local gate inverting the sign of
charge carriers should yield much higher on–off ratios.

Received 18 April 2006; accepted 20 June 2006; published 20 August 2006.
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