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Multiple Andreev Reflections Revealed by the Energy Distribution of Quasiparticles
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We have performed the tunnel spectroscopy of the energy distribution function of quasiparticles in
5-mm-long silver wires connected to superconducting reservoirs biased at different potentials. The dis-
tribution function f�E� presents several steps, which are manifestations of multiple Andreev reflections
at the NS interfaces. The rounding of the steps is well explained by electron-electron interactions.
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The modification of the properties of a normal (i.e., non-
superconducting) metallic electrode when it is connected
to a superconducting one, a phenomenon called “proximity
effect,” has been highlighted by experiments on meso-
scopic devices [1]. In metallic nanostructures, equilibrium
properties, such as the density of states [2], the conduc-
tivity [3], or the supercurrent [4], are now well explained.
The propagation of the correlations between time-reversed
states from a superconductor (S) into a diffusive normal
metal (N) is described by the Usadel equations [5], which
apply to situations where all superconductors are at the
same potential. In this Letter, we address an out-of-
equilibrium situation, in which two superconductors con-
nected through a long �L � 5 mm�, diffusive normal wire
are biased at different potentials (see Fig. 1). We have
measured the energy distribution function of quasipar-
ticles in the middle of the wire, which is expected to be
strongly modified by the presence of superconductors at
the ends, since quasiparticles can escape the wire only
if their energy exceeds the energy gap D of the super-
conductor. Therefore, in the presence of a finite voltage
across the wire, the quasiparticles in the wire are expected
to be “heated” up to the gap energy [6]. A quantitative
description follows from the concept of multiple Andreev
reflections, which recently has been shown to describe
in great detail the current-voltage characteristics [7], the
noise [8], and the supercurrent [9] in atomic point contacts
between superconductors. An Andreev reflection consists
of the reflection of a quasielectron into a quasihole (or
vice versa) at the N side of an NS interface, a process
which transfers a Cooper pair into the superconductor.
The energies of the two quasiparticles involved are sym-
metrical with regard to the electrochemical potential of the
superconductor. When two superconductors are present,
successive Andreev reflections at both superconductors
lead to a progressive rise of the quasiparticle energies, till
the superconducting gap is exceeded. At zero voltage,
multiple Andreev reflections lead to the formation of
bound states which carry the supercurrent [10]; at finite
voltage, they result in nonlinearities in the current voltage
characteristics [6,7]. Here, we focus on the fingerprint of
multiple Andreev reflections in the shape of the energy
distribution function f�E� of the quasiparticles.
078 0031-9007�01�86(6)�1078(4)$15.00
For simplicity, we first make the following assumptions:
(i) electron-electron and electron-phonon interactions are
neglected; (ii) the renormalization of the diffusion con-
stant in the normal wire by proximity effect is neglected;
(iii) the probability of Andreev reflection is taken equal
to 1 for quasiparticle energies within the gap, and to 0
elsewhere. Under assumptions (i) and (ii), the distribution
function varies linearly with the position X along the wire
[11]. Because of Andreev reflection, the occupation factor
for quasielectrons and quasiholes at symmetrical energies
about the electrochemical potential m of the superconduc-
tor is equal at the NS interfaces, as well as their gradients.

FIG. 1. Left: layout of the experiment: a voltage U is applied
between two superconductors (S) connected through a normal
wire (N) of length L. A superconducting probe electrode, rep-
resented by an arrow, forms a tunnel junction with the central
part of the wire. Top center and top right: representation in
the energy (horizontal axis) and position (vertical axis) space of
the quasiparticle paths responsible for the current through the
normal wire. The excitation spectrum of the top and bottom
superconductors has a gap 2D centered on their electrochemi-
cal potentials mt and mb �mt 2 mb � eU�, with quasielectron
states occupied at negative energies (dark areas) and empty (light
gray areas) at positive energies. Quasiparticle paths consist of
quasielectron (dark disks) and quasihole (light gray disks) tra-
jectories at symmetric energies about mt or mb , connected by
Andreev reflection. The area of the disks is proportional to the
occupation factor of the quasiparticle state, which varies linearly
along the path from 1 to 0. The bottom plots are the energy dis-
tribution functions at the center of the wire, at eU . 2D (center)
and D , eU , 2D (right).
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One can therefore define quasiparticle paths in the
energy-position space between occupied and empty quasi-
particle states in the superconductors, along which both
the nature of the quasiparticle and its energy change at
each NS interface. The occupancy f of the quasiparticle
state on this diffusive path varies continuously from 1 to
0 along the trajectory, with a gradient given by the inverse
of the length of the trajectory. Hence, f is simply, at a
given point of a trajectory, the remaining fraction of the
path. The distribution function f�E�, which is defined
for quasielectrons, is then equal to f at a point where the
quasiparticle on the considered trajectory is a quasielec-
tron, and to 1 2 f where it is a quasihole. This allows one
to determine the distribution function as a function of en-
ergy and position in the wire. Two examples are illustrated
in Fig. 1. In the first one, the voltage U � �mt 2 mb��e
is larger than 2D�e (with mt and mb the electrochemical
potentials of the two superconductors). The leftmost
quasiparticle path in Fig. 1, labeled a, is emitted from
a filled quasielectron state in the top superconductor
at an energy E between mb 2 D and mb 1 D. This
quasielectron is then reflected as a quasihole at the bottom
NS interface, at an energy symmetrical about mb . It is
then absorbed in the top superconductor where quasihole
states are unoccupied at the corresponding energy (since
quasielectron states are filled), and the quasiparticle
path has a total length 2L. At the energy of the initial
quasielectron, the position X � L�2 is reached when 3�4
of the total path remains; therefore, f�E� � 3�4. The
second path in Fig. 1, labeled b, has length L: quasi-
electrons from the top superconductor with an energy
between mb 1 D and mt 2 D are absorbed in the bottom
superconductor after one traversal of the wire. Therefore
f�E� � 1�2 at X � L�2. The third path, labeled c,
resembles path a, with an inversion of quasiholes and
quasielectrons. One obtains thus f�E� � 1 2 3�4 � 1�4
at the middle of the wire. Altogether, the energy dis-
tribution function at X � L�2 presents three steps, at
3�4 (width 2D), 1�2 (width eU 2 2D), and 1�4 (width
2D). The right diagram of Fig. 1 deals with the case
D , eU , 2D. The steps of f�E� at 3�4 and 1�4 are
still present, since the paths of length 2L of the former
diagram (not reproduced here) are still relevant for the
energy intervals �mb 1 D 2 eU; mb 2 D 1 eU� and
�mt 1 D 2 eU; mt 2 D 1 eU�. In addition, a new type
of path appears, labeled d, with length 3L. One obtains
then three extra steps in f�E�, at 5�6, 1�2, and 1�6. More
generally, multiple Andreev reflections lead to the appear-
ance of steps in f�E� at energies between mb 2 D and
mt 1 D. The number of steps is 2 3 int� 2D

eU � 1 3, and the
sum of the widths of two successive steps is eU. In the
limit U ! 0, f�E� varies linearly from 1 at E � 2D

to 0 at E � D. To conclude, this simple model predicts a
staircase pattern in the energy distribution function, which
directly reveals multiple Andreev reflections.

We report results obtained on two samples, fabricated
by shadow mask evaporation in order to obtain the com-
plete structure schematically described in Fig. 1. The nor-
mal metal 45-nm-thick wires are made of 99.9999% pu-
rity silver, as samples in which phase coherence lengths
beyond 10 mm were found [12]. The wire length of
sample No. 1 (sample No. 2) is L � 5.15 mm (5.6 mm),
the width w � 80 nm (70 nm), and the normal state resis-
tance, measured at large voltage, R � 38 V (58 V). The
length is chosen short enough for the energy redistribution
among quasiparticles to be small [13], but long enough for
the density of states at the middle of the wire to be almost
energy independent [2]. In sample No. 1, the wire extends
at both ends into large contact pads which are covered by a
300-nm-thick aluminum layer. The reservoirs are therefore
bilayers of Ag and Al and have thus a reduced supercon-
ducting gap. In sample No. 2, the contact pads have no
underlying silver layer on a rectangle of 300 3 500 nm2

just at the ends of the wire, in order to obtain a larger
superconducting gap. A tunnel junction is formed at the
middle of the wire (and, on sample No. 2, also at 1.25 mm
from the top electrode), with a 100-nm-wide aluminum
probe electrode. The samples were mounted in a shield-
ing copper box on a sample holder thermally anchored to
the mixing chamber of a dilution refrigerator. All connect-
ing lines to the samples are filtered at 4.2 K and at the
sample temperature. The experiment consists of measur-
ing the differential conductance dI�dV �V � of the probe
junction when a voltage U is applied across the wire. Un-
der the assumptions that the density of states of the normal
wire is constant at the position of the probe junction and
that the temperature of the probe electrode remains negli-
gible compared to the critical temperature of aluminum,
the differential conductance of the junction is simply a con-
volution product of the derivative of the density of states
of the superconductor and of the distribution function in
the wire [11,14]. We deconvolve the data numerically,
after determining the junction resistance and gap energy
at equilibrium �U � 0� where f�E� is expected to be a
Fermi function. In Fig. 2, we present with open sym-
bols the distribution functions measured on sample No. 1
at U � 151 mV, 310 mV, and 595 mV, and in Fig. 3 on
sample No. 2 at U � 700 mV, for both positions. The en-
ergy reference was taken at the potential of the center of the
wire (mt � eU�2, mb � 2eU�2). As expected from the
simplified description of multiple Andreev reflections pre-
sented above, the distribution function for sample No. 1
presents, at large voltages (310 and 595 mV in Fig. 2),
three steps near 3

4 , 1
2 , and 1

4 (dashed lines). The distance
between the center of the side steps is well given by eU.
Their width gives the value of the gap in the reservoirs:
D � 115 meV, which is as expected smaller than the gap
of aluminum (200 meV). In contrast with the simplified
model, the steps are not flat, and the slope of the side steps
near 3�4 and 1�4 is larger than the slope at 1�2. More-
over, the model predicts five steps in f�E� when U is be-
tween D�e and 2D�e (see Fig. 1), whereas the data taken
at U � 155 mV display only slight inflections of f�E�
around the predicted values. At voltages below 100 mV,
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FIG. 2. Distribution functions at the middle of the wire of
sample No. 1, when the reservoirs are in the superconducting
state or in the normal state (inset), for different values of the
bias voltage U. Symbols are experimental data, dotted lines are
the expectations of the simplified theory with multiple Andreev
reflections alone as in Fig. 1, and solid lines correspond to the
solution of the Boltzmann equation with the Coulomb inter-
action term.

no structure can be seen in the distribution function, and ir-
regularities appear in the deconvolved data, resulting from
our neglection of the modification of the density of states
in the wire at the scale of the Thouless energy h̄D�L2

[15] (data not shown). In sample No. 2, the evolution of
the distribution function with position agrees qualitatively
with the model. However, the exact position of the steps
is slightly shifted from the expected values. We attribute

FIG. 3. Distribution functions on sample No. 2, at two
positions (x � X�L � 0.58 and x � 0.35), for U � 700 mV.
Symbols: experiment. Solid lines: solution of the Boltzmann
equation accounting for the Andreev reflections at the reservoirs
and electron-electron interactions within the wire.
1080
this shift to the small size of the top NS contact, which
introduces a significant contact resistance, accounted for
by an extra length of the wire. The relative position of
the probe junctions needed to explain the position of the
steps in f�E� turns out to be X�L � 0.58 (instead of 0.5)
and X�L � 0.35 (instead of 0.25), which corresponds to
an effective lengthening of the top end of the wire by about
850 nm. The widths of the side steps give slightly differ-
ent gaps at both ends: 120 and 140 meV.

In order to account for the rounding of the steps, we
now include in the analysis the effect of energy relaxation
of quasiparticles, due to Coulomb electron-electron [13]
and electron-phonon [16] interactions. These interactions
contribute to the stationary Boltzmann equation which de-
termines the variations of f�E�:

D
≠2fE

≠X2 1 Ie-e
in � fE� 1 I

e-ph
in � fE� � 0

through the interaction collision integrals [11,13]

Ie-e
in � fE� �

Z
d´ dE0 Ke�´�

3 � fEfE2´fE0fE01´ 2 fEfE2´fE0fE01´	 ,

I
e-ph
in � fE� �

Z
d´ Kph�´�fEfE2´ ,

where Ke�´� � ke�´3�2, Kph�´� � kph´2 [17], fE stands
for f�E�, and fE stands for 1 2 f�E�. In order to
determine the Coulomb interaction parameter ke, we have
taken advantage in sample No. 1 of the weaker supercon-
ductivity in the reservoirs than in the probe finger, which
allows one to turn just the reservoirs normal in a moderate
magnetic field (H � 16 mT, applied perpendicular to the
sample plane), while keeping the probe superconduct-
ing. The distribution function with normal reservoirs at
U � 595 mV is displayed in the inset in Fig. 2, and has,
as expected [11], only one step near 1�2. From the fit
of a set of such curves at different values of U, we have
confirmed the ´ dependence of K�´� and obtained [13]
ke � 0.75 meV21�2 ns21. The coupling constant kph
between electrons and phonons was extracted from the
temperature dependence of the phase coherence time
on similarly fabricated silver samples [12]: kph �
8 meV23 ns21. When the reservoirs are superconduct-
ing, the same Boltzmann equation also allows one to
compute numerically f�E�, with the following boundary
conditions for jEj , D: (a) f�m 1 E� � 1 2 f�m 2 E�
accounts for the equality of the occupancy of quasielec-
tron and quasihole states at symmetric energies about the
electrochemical potential m of the superconductor and
(b) ≠f

≠x �m 1 E� � 2
≠f
≠x �m 2 E� is the conservation of

the quasiparticle current. The results for f�E�, using the
value of ke and kph given above, are plotted with solid
lines in Fig. 2. Note that the inclusion of the phonon term
I

e-ph
in � f� changes only slightly f�E�. The side steps at 3

4
and 1

4 are more rounded than the step at 1
2 , as observed.
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Indeed, they correspond to quasiparticles staying in the
wire 4 times longer on average (path length 2L), which
are thus more likely to interact with other quasiparticles.
The distribution function at U � 151 mV is very rounded
by interactions, as expected for quasiparticle paths with
lengths 2L and 3L. The overall agreement with the mea-
surements indicates that this simple picture of multiple
Andreev reflections [i.e., with assumptions (ii) and (iii)]
together with Coulomb interactions captures the essential
phenomena. In sample No. 2, a good fit of the data is
found with ke � 0.35 meV21�2 ns21 at both measuring
positions (see solid curves in Fig. 3).

We now discuss the influence of a more precise descrip-
tion of Andreev reflection, i.e., when relaxing assumptions
(ii) and (iii). This can be achieved using the Usadel equa-
tions [5], assuming that the wire is long enough so that
the superconducting correlations are completely lost in the
middle of the wire [18], and neglecting electron-electron
interactions. Qualitatively, in the example of trajectory a
in Fig. 1, the time spent near the bottom NS interface is
shortened by the renormalization of the diffusion constant
at energies close to the electrochemical potential of the
superconductors [3], which results in a shorter remaining
length when X � L�2 and thus to a value for f�E� smaller
than 3�4. However, in our experiment, where the length
of the wire is 1 order of magnitude larger than the super-
conducting coherence length

p
h̄D�D, this effect on f�E�

turns out to be negligible.
To conclude, our measurements display clear signa-

tures of multiple Andreev reflections in SNS junctions and
demonstrate the importance for the proximity effect of
electron-electron interactions, a contribution which is not
taken into account in the standard Usadel formalism.
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