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Quantum transport in semiconductor-superconductor microjunctions
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A formula is derived that relates the conductance of a normal-metal —superconductor (NS) junc-
tion to the single-electron transmission eigenvalues. The formula is applied to a quantum point
contact (yielding conductance quantization at multiples of 4e /h), to a quantum dot (yielding a
non-Lorentzian conductance resonance), and to quantum interference effects in a disordered NS
junction (enhanced weak-localization and reflectionless tunneling through a potential barrier).

Electrical transport through the interface between a
normal metal and a superconductor requires the conver-
sion of normal current (carried by excitations) to super-
current (a ground-state property). The process by which
this conversion occurs is a non-charge-conserving scat-
tering process known as Andreev reflection:1 An electron
excitation above the Fermi level in the normal metal is
reflected at the normal-metal —superconductor (NS) inter-
face as a hole excitation below the Fermi level. The miss-
ing charge of 2e is removed as a supercurrent. The early
theoretical works on the conductance of an NS junction
treats the dynamics of the quasiparticle excitations semi-
classically, as is appropriate for macroscopic junctions.
Interest in mesoscopic NS junctions, where quantum in-
terference effects play a role, is a new development, s 4

motivated in part by a recent experiment. s Much of the
present technological efFort in this field is aimed at fab-
ricating a direct contact between a superconducting film
and the two-dimensional (2D) electron gas in a semicon-
ductor heterostructure. Such a system would be ideal
for the study of the interplay of Andreev reHection and
the mesoscopic effects known to occur in semiconductor
nanostructures.

In this paper a quantum transport theory for conduc-
tion through an NS interface is developed, and is used
to study a variety of mesoscopic effects which are ex-
pected to occur in semiconductor-superconductor micro-
junctions. The key result, Eq. (5), is a relation between
the conductance GNs of the NS junction and the eigen-
values of the normal-state transmission matrix product
ttt. We give four illustrative applications of this conduc-
tance formula. One can think of many more applications,
some of which are briefly mentioned in the concluding
paragraph.

The model considered is illustrated in the inset of Fig.
1. It consists of a disordered normal region (possibly
containing a geometrical constriction), adjacent to a su-
perconductor (S). To obtain a well-defined scattering
problem we insert ideal (impurity-free) normal leads N&
and Nq to the leR and right of the disordered region. We
assume that the only scattering in the superconductor
consists of Andreev reflection at the NS interface, i.e.,
we consider the case that the disorder is contained en-
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FIG. 1. Solid curve: conductance GNs vs Fermi energy

of a quantum point contact between a normal and a super-
conducting reservoir. The dotted curve is twice the conduc-
tance Gpp for the case of two normal reservoirs (Ref. 15).
The constriction is defined by the 2D saddle-point potential
V(x, y) = Vp —~imsr z + ~ious„y, with ur„/sr = 3; GNs is
calculated from Eq. (5), with T„=[1+exp( —2ze„/hu )je„=EF —Vp —(n —z)bur„.1

tirely within the normal region. The model is directly
applicable to a superconductor in the clean limit (mean
free path in S large compared to the superconducting
coherence length ()." The spatial separation of normal
and Andreev scattering also applies to a microjunction
of dimensions W « (, because of the separation of the
length scales for normal scattering (W) and Andreev re-
flection ((). Let the NS interface be located at z = 0,
and let the pair potential b, (r) in the bulk of the su-
perconductor (z » () have amplitude b,o and phase P.
For x & 0 one has b, (r) = 0 in the assumed absence of
electron-electron interactions in the normal metal. The
simplest model consistent with these two boundary con-
ditions is the step-function model b, (r) = doe'&e(x).
Likharevs discusses in detail the conditions for its va-
lidity: If W « (, nonuniformities in b, extend only over
a distance of order W from the junction. Since nonuni-
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& o e'~&
sA(s) = exp[—i arccos(s/Ap)] I (2)

Andreev reflection transforms an electron mode into a
hole mode, without change of mode index, and with a
mode-independent phase shift.

We can now construct the scattering matrix s of the
whole system for energies 0 & s & Ap. An electron in-
cident in lead Nq is reflected either as an electron (with
scattering amplitudes s„) or as a hole (with scattering
amplitudes sh, ). Similarly, the matrices shh and s,h con-
tain the scattering amplitudes for reflection of a hole as
a hole or as an electron. For the linear-response conduc-
tance GNs of the NS junction at zero temperature we

only need the s matrix at the Fermi level, i.e., at e = 0.
We limit ourselves to this case and omit the argument s
in what follows. We apply the general formula

GNS = Tr(1 —s«s«+ sh, sh, ) = Trsh, sh, . (3)

The second equality follows from unitarity of s. We ex-
press s in terms of s~ and s~, and find

4e~
Wtygty (1z+ r22rz2) t2gtgy(1 + r22r22)

(4)

In what follows we will consider a junction in zero mag-
netic field. Then so is a symmetric matrix, so ——so.
Equation (4) simplifies to

4e ( t t 4e T„/ t ) z
z N

where T„(n = 1, 2, . . . , N) are the eigenvalues of the Her-
mitian matrix t&ztIz. Equation (5) holds for an arbitrary
transmission matrix, i.e., tor arbitrary disorder potential.

formities on length s&:»es « ( do not afFect the dynam-
ics of the quasiparticles, these can be neglected and the
step-function model holds. Alternatively, it holds if the
resistivity of the junction region is much bigger than the
resistivity of the bulk superconductor. s

The construction of a scattering matrix (s matrix) for
the electron and hole quasiparticle excitations of the NS
junction proceeds in a similar way as in Ref. 9. The s
matrix s~ of the normal region (at energy s, relative to
the Fermi energy EF) has the block-diagonal form

o & (r t &

O s, (-s) )
where so is the unitary single-electron s matrix. The off-
diagonal blocks of s~ are zero, because the normal region
does not couple electrons and holes. The reflection and
transmission matrices r and t are N x N matrices, with
N the number of propagating modes in leads Nq and Ng.
For energies 0 & s & Ap there are no propagating modes
in the superconductor. We can then define a 2N x 2N s
matrix sA for Andreev reflection at the NS interface. In
the step-function model, and neglecting terms of order
b p/E~ (the Andreev approximation~), one has

It is the multichannel generalization of a formula first ob-
tained by Blonder, Tinkham, and Klapwijk P (and sub-
sequently by others~z ~s) for the single-channel case. A
formula of similar generality for the normal-metal con-
ductance t ~ is the multichannel Landauer formula

To illustrate the power and generality of Eq. (5), we now

apply it to a variety of NS junctions.
(1) Quantum point contact. Consider first the case

that the junction consists of a ballistic constriction with
a normal-state conductance quantized at G~ = 2Npe /h
The quantization occurs because the transmission eigen-
values are equal to either zero or one. s (This does not
imply that the transport through the constriction is adi-
abatic. ) We thus conclude from Eq. (5) that the conduc-
tance of the NS junction is quantized in units of 4e2/h:
GNs = 4Npes/h. For a qualitative discussion of this
doubling of the conductance step height we refer to Ref.
14. In the classical limit Np ~ oo we recover the well-
known result GNs = 2G~ for a classical ballistic point
contact. ' In the quantum regime, however, the sim-
ple factor-of-2 enhancement only holds for the conduc-
tance plateaus, and not to the transition region between
the plateaus. To illustrate this, we compare in Fig. 1 the
conductances GNs and 2G~ for Biittiker's model~s of a
saddle-point constriction in a 2D electron gas. Appre-
ciable difFerences appear in the transition region, where
GNs & 2G&. This is actually a rigorous inequality within
the present model, which follows directly from Eqs. (5)
and (6) for arbitrary transmission matrix.

(8) Quantum dot Conside. r next a small confined
region, which is weakly coupled by tunnel barriers to
two electron reservoirs. We assume that transport
through this "quantum dot" occurs via resonant tunnel-
ing through a single bound state. Let s„,be the energy
of the resonant level, relative to the Fermi level in the
reservoirs, and let rq/5 and rq/h be the tunnel rates
through the two barriers. The normal-state conductance
G~ has the Breit-Wigner form

2e rq12 2e

h sz +r~/4 h

with I'—:I'p + I'p. The transmission matrix which yields
this conductance has elements

tgg(s) = Ugr(s)U2, r(s)„
v'ri r~

spes + lr 2

where p„rq„= rq, p„r2„—= r2, and Uq, U2 are uni-

tary matrices. The matrix tzztI2 (at s = 0) has eigenval-
ues T„=TBwb„q. Substitution into Eq. (5) yields

4e' f 2rr,
i4,2 +r

The conductance on resonance (s„, = 0) is maxim» if
rq ——rz, and is then equal to 4e~/h —turice the norm»-
state value. Note that the line shape (9) difFers substan-
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4e'2 oo

(GNs) L, = d( pL, (() cosh (2L/(),
h p

(10)

tially from the Lorentzian line shape (7) of the Breit-
Wigner formula, decaying as e, 4 rather than e,,2.

(8) Disordered junction. Consider a point contact
or microbridge between a normal and superconducting
reservoir, of length L much greater than the mean free
path l for elastic impurity scattering. We calculate the
average (GNs)L„averaged over an ensemble of impurity
configurations. The transmission eigenvalue T„can be
parametrized in terms of a channel-dependent localiza-
tion length („:T„=cosh (L/g„). Using a trigonomet-
ric identity, the ensemble-average of Eq. (5) becomes

bridge. Weak-localization theory tells us that (GN) =
gp(e2/h)(Nl/L) —g1(e2/h), where gp and g1 are positive
constants of order unity. Equation (12) then implies that
(GNs) = gp(e /h)(Nl/L) —2g1(e /h), which is smaller
than (G~) by an amount g1e /h —as a consequence of
the enhanced 1peak localization in the NS junction.

(g) Zbnnel barrier. As a final application of Eq. (5),
we consider the effect of a tunnel barrier at the NS inter-
face on the conductance of a phase-coherent disordered
junction. Let sg be the s matrix of the disordered region
and sb that of the barrier. The s matrix sp of the entire
normal region (disordered segment plus barrier) can be
constructed from sg and sb. We need the transmission
submatrix t12 of sp, which is given by

where pg(()—:(g„b((—(„))g is the density of localiza-
tion lengths. In the same parametrization, one has

t12 12( 11 22) t12'd b d -1b (13)

282 oo

(GN)L, = d(pl, (()cosh (L/().
h p

In the regime l « L « Nl the L dependence of the
density pL, (() can be rigorously disregarded [pL, (() cor-
responds to a uniform distribution of 1/(, with average
spacing oc 1/Nl independent of L (Ref. 17)]. The whole
L dependence of the integrands then lies in the argument
of the hyperbolic cosine, so that

(GNs)L, = 2(G1v)2L ~ (12)

This derivation1s formalizes the intuitive notion that An-
dreev reflection at an NS interface efFectively doubles the
length of the normal-metal conductor. Since (GN) oc

Nl/L, it follows from Eq. (12) that (GNs)L, = (G~)L, .
We conclude that —although GNs according to Eq. (5)
is of second order in the transmission eigenvalues T„—
the ensemble average (GNs) is of first order in l/L. The
resolution of this paradox is that the T's are not dis-
tributed uniformly, but are either exponentially small
(closed channels) or of order unity (open channels). 1s 2p

Hence the average of T2 is of the same order as the av-
erage of T„.

Previous work1 21 had obtained the equality of (GNs)
and (G~) from semiclassical equations of motion, with
disregard of quantum interference effects, as was appro-
priate for macroscopic systems which are large compared
to the normal-metal phase-coherence length l~. The
present derivation, in contrast, applies to the "meso-
scopic" regime L & l~, in which transport is fully phase
coherent. Recently, Takane and Ebisawa~ have studied
the conductance of a disordered phase-coherent NS junc-
tion by numerical simulation. They found (GNs) = (G1v)
within numerical accuracy for l « L « Nl.

If the condition L « Nl is relaxed, differences be-
tween (GNs) and (G~) appear. To lowest order in
L/Nl, the difFerence is a manifestation of the 1peak-

localization eKect, as we now discuss. In the "open-
channel approximation, " 7 the integrals over t,

' are re-
stricted to the range t,

' ) L of localization lengths
greater than the length of the conductor. In this
range the density pL, (g) remains independent of L,
so that Eq. (12) still applies approximately. Con-
sider now the geometry W « L relevant for a micro-

We consider for simplicity the case of a tunnel barrier
with mode-independent transmission probability I' (a
scalar). For the s matrix of the disordered region, we
employ the decomposition22

t'VO
t t —ivy ~Z ) &V+ 0 0'"='0U)IIi ~T -'~~)IIi o U )I

(14)

Here U and V are N x N unitary matrices, while 7 and
R—:1 —1 are N x N diagonal matrices with real positive
elements. Combining Eqs. (5), (13), and (14), we find
for the conductance GNBs of an NS junction containing
a tunnel barrier the expression

GNBS =
I 2 I

Tr (=-II ')',
)

0 —= 1+ M U'U'MI 1/2 (
2 - I +

+M+ U UM'

4e & 4e
t tzzt&&

«t
(GNBs)~ =

2 —t12t12 )

where = —= 1/(2 —1) and My = 1+:".
To proceed we adopt the isotropy assumption of

random-matrix theory, 1r valid for l, W « L. In this
limit the matrix U is distributed uniformly over the uni-

tary group M(N), independently of the distribution of
transmission eigenvalues. We denote by (f)~ the aver-

age of a function f(U) over the unitary group. 24 The
average (GNBs)~ can be calculated exactly in the limit
N ~ oo, l/L ~ 0 at fixed Nl/L and fixed I'. In this
limit we may take M~ ~ 1 and factorize the average
((:"0 1)2)~ -+ (:-(0 1)~)2. The remaining average is
easily evaluated, as it is independent of N,

dn f (1 —r)'~' ) '
2 —r

(& ')u =
I
1+2 cos2o.

I2~ I, 2 —I' ) I'

Substituting into Eq. (15) we see that the terms contain-
ing I cancel, and we are leR with
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I'his is just the expr:ssion for the conductance without
the tunnel barrier [Eq. (5) with ti2 substituted by the
transmission matrix;. i2 of the disordered region alone].
We conclude that, on. average, the reduction in current
because of reflection at the barrier is just compensated by
the current increase ETom Andreev reflection. The net re-
sult is as if tunneling through the barrier is rePecti onless.
van Wees et al. , in Ln insightful article, have proposed
such an effect if the disorder potential is so smooth that it
does not randomly scatter the electrons but deflects them
deterministically. In i;hat case the Andreev-reflected hole
simply retraces the path of the incident electron, which
was crucial for their trajectory argument. Here we have
found that this (unrealistic) condition is not required to
obtain a complete suppression of the barrier resistance
in the limit l/L « I'. As discussed in Ref. 4, the excess
conductance observed by Kastalsky et aLs may well be
due to this quantum interference effect.

These are four examples of applications of Eq. (5) to
the ballistic, resonant-tunneling, and difl'usive transport
regimes. We briefly mention a few other promising appli-
cations. A magnetic field breaks the time-reversal sym-
rnetry (TRS) of the scattering processes. As a conse-
quence, so is no longer a symmetric matrix, and Eq. (5)
does not apply. Equation (4) remains valid, however, and
can serve as a starting point for a study of quantum inter-
ference effects in an NS junction in the absence of TRS.
In this paper we have focused on the ensemble-averaged

conductance. Equations (4) and (5) are not restricted
to this and can describe the sample-specific fluctuations
of GNs as well. Since Eq. (5) is a linear statistic on
the transmission eigenvalues [i.e. , a function of the form

P„f(T„)],it follows from general considerationsi9 that
the fluctuations in GNs in the presence of TRS are uni-
versally of order e2/6 —in agreement with a recent in-
dependent investigation. For G~, broken TRS does not
affect the universality of the fluctuations, but merely re-
duces the variance by a universal factor of 2.i7 We expect
no such simple behavior for GNs, since Eq. (4) is not a
linear statistic on T„. That is a crucial distinction with
the Landauer formula, which remains a linear statistic
regardless of whether TRS is broken or not.

Note added in proof. In collaboration with S. Feng, we
have extended the calculation to include a magnetic field.
The result (16) for t/L « I' turns out to be insensitive
to a magnetic field. For a weakly reflecting barrier we
find (GNBs) = Go[1 —P(l —I')l/L]+O(l —I'), where
Go ——( 2e 2/h) Nt/Lis the conductance of the disordered
normal region, and P equals 1 in the absence and 2 in
the presence of a magnetic field.
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