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1 Introduction

This is an example for the application of the LCAO method to bandstructure calculation. We
will apply this method to a two-dimensional sheet of graphite, called graphene, and carbon
nanotubes, which are slices of graphene rolled into a seamless cylinder. Graphene and carbon
nanotubes (CN) have peculiar electronic properties, which can be derived by the LCAO method
(also called tight-binding method).

Graphene is a single sheet of carbon atoms arranged in the well known honeycomb structure.
This lattice is shown in Fig. 1. Carbon has four valence electrons, of which three are used
for the sp2 bonds. This exercise is concerned with the bandstructure of the fourth electrons.
Chemists refer to this band as the π band. Thinking in terms of atomic orbitals this fourth
electron is in a pz orbital. Note, there are two such electrons per unit-cell. Hence, there will
be two π-bands ( the π and π⋆ bands). The even number of electrons per unit-cell makes this
example very interesting because we do not know a priori whether the material will be metallic
or semiconducting.

Refering to Fig. 1 the lattice vectors can be written as:

a⃗1 = a0
√
3
(
1/2,

√
3/2
)

a⃗2 = a0
√
3
(
−1/2,

√
3/2
)

(1)

in the (x, y) basis and with a0 denoting the nearest neighbor distance, a0 = 1.42 Å. The pz
atomic-orbitals are oriented perpendicular to the plane and are rotational symmetric around the
z-axis.

2 LCAO Bandstructure of Graphene

We start with the following Ansatz for the wavefunction:

ψk⃗ =
∑
R⃗∈G

eik⃗·R⃗ϕ(x⃗− R⃗) , (2)
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Figure 1: Lattice of graphene. Carbon atoms are located at each crossings and the lines indicate the
chemical bonds, which are derived from sp2-orbitals. Also shown are the primitive lattice vectors a⃗1,2
und the unit-cell (shaded). There are two carbon atoms per unit-cell, denoted by 1 and 2.

where G denotes the set of lattice vectors. According to the construction, this is a Bloch wave.
Such a representation is also called Wannier function. ϕ(x⃗) are the atomic wavefunctions, i.e.
the pz atomic orbitals. Now, we have to take into account that there are two such orbitals per
unit-cells. We call these functions ϕ1 and ϕ2, where the index refers to the resepctive carbon
atoms. It is important to remember that the LCAO approximation assumes that the atomic
wave-functions are well localized at the position of the atom. The total function ϕ is a linear
combination of ϕ1 and ϕ2:

ϕ(x⃗) = b1ϕ1(x⃗) + b2ϕ2(x⃗) =
∑
n

bnϕn (3)

Next, we consider the Hamiltonian for a single electron in the atomic potential given by all the
carbon atoms:

H =
p⃗2

2m
+
∑
R⃗∈G

(
Vat(x⃗− x⃗1 − R⃗) + Vat(x⃗− x⃗2 − R⃗)

)
(4)

Recall that x⃗1,2 denote the position of the two carbon atoms within the unit-cell. Applying for
example ϕ1 to this Hamiltonian results in:

Hϕ1 = ϵ1ϕ1 +

∑
R⃗ ̸=0

(
Vat(x⃗− x⃗1 − R⃗) + Vat(x⃗− x⃗2 − R⃗)

)
+ Vat(x⃗− x⃗2)

ϕ1 (5)
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Here ϵ1 is the eigenvalue for the atomic pz state. The second part to the right of this equation
looks very ugly, so we abbreviate it by ∆U1ϕ1. It is important to realize that this product is
small, because ∆U1 is small in the vicinity of atom 1 and ϕ1 is small everywhere away from
location 1. With this abbreviation we have the following two equations, which are the starting
point of the LCAO calculation:

Hϕ1,2 = (ϵ1,2 +∆U1,2)ϕ1,2 (6)

This can be further simplified by noting that ϵ1 = ϵ2 and that we are free to set the zero of
energy. We choose ϵ1,2 = 0. Therefore:

Hϕ1 = ∆U1ϕ1 and Hϕ2 = ∆U2ϕ2 (7)

We need to solve the Schrödinger equation:

Hψk⃗ = E(k⃗)ψk⃗ (8)

Since there are two parameters, b1 and b2, two equations are required for this eigenvalue prob-
lem. They are simply given by projecting ψ on to the two states ϕ1 and ϕ2. Show that:

E(k⃗)⟨ϕj|ψ⟩ = ⟨ϕj|∆Uj|ψ⟩ (9)

Calculate the terms ⟨ϕ1|ψ⟩ and ⟨ϕ2|ψ⟩. Assume that only nearest-neighbor overlap integrals
have to be taken into account. For example,

∫
ϕ⋆
1 ϕ2 is non-zero as is

∫
ϕ⋆
1(x⃗)ϕ2(x⃗ − a⃗1), see

Fig. 1 We obtain the two equations:

⟨ϕ1|ψ⟩ = b1 + b2

(∫
ϕ⋆
1ϕ2

)(
1 + e−ik⃗·⃗a1 + e−ik⃗·⃗a2

)
⟨ϕ2|ψ⟩ = b2 + b1

(∫
ϕ⋆
2ϕ1

)(
1 + eik⃗·⃗a1 + eik⃗·⃗a2

)
(10)

We will assume that the overlap integral is real:

γ0 =

∫
ϕ⋆
1ϕ2 ∈ R (11)

In the next step we need to calculate ⟨ϕj|∆Uj|ψ⟩. Again, only on-site and nearest-neighbor
overlap integrals will be considered. Furthermore, you can use the abreviation:

γ1 =

∫
ϕ⋆
1∆U1ϕ2 =

∫
ϕ⋆
2∆U2ϕ1 (12)
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The two integrals are equal because interchanging the indicies should not matter due to sym-
metry and γ1 ∈R. We arrive at the following two equations:

⟨ϕ1|∆U1|ψ⟩ = b2γ1

(
1 + e−ik⃗·⃗a1 + e−ik⃗·⃗a2

)
⟨ϕ2|∆U1|ψ⟩ = b1γ1

(
1 + eik⃗·⃗a1 + eik⃗·⃗a2

)
(13)

Putting everything together, i.e. Eq. (9), (10) and (13), and using the abbreviation

α(k⃗) = 1 + e−ik⃗·⃗a1 + e−ik⃗·⃗a2 , (14)

the eigenvalue problem is finally formulated as:(
E(k⃗) α(γ0E(k⃗)− γ1)

α⋆(γ0E(k⃗)− γ1) E(k⃗)

)(
b1
b2

)
=

(
0

0

)
(15)

For γ0 = 0 and γ1 = 0 the solution is simply E(k⃗) = 0, as it should be. The dispersion relation
E(k⃗) is obtained from Eq. 15 in the standard way by putting the determinant to zero. Try to
express E(k⃗). Make use of the fact that γ0 is small. If the latter is used, one obtains (as an
approximation) the very simple dispersion relation

E(k⃗) = ±γ1
∣∣∣α(k⃗)∣∣∣ (16)

Calculate the magnitude of α. One obtaines:

E(k⃗) = ±γ1
√
3 + 2cos(k⃗ · a⃗1) + 2cos(k⃗ · a⃗2) + 2cos(k⃗ · (⃗a2 − a⃗1)) (17)

This result is often expressed in a different form by using the (x, y) components for k⃗, see Fig. 1.
Show that:

E(kx, ky) = ±γ1

√√√√1 + 4cos

(√
3aky
2

)
cos

(
akx
2

)
+ 4cos2

(
akx
2

)
(18)

a is the lattice constant, i.e. a =
√
3a0.

As an next exercise, plot this function using Maple or Mathematica. Discuss the bandstructure
and try to answer the question whether graphene is a metal or a semiconductor. Recall, there
are two valence electrons per unit-cell. Where is the Fermi energy?

Discuss the eigenspace at k⃗ = 0. From Eq. 15 we obtain: b2 = ±b1, so that ϕ = (ϕ1 ± ϕ2)/
√
2

with the plus sign valid for E > 0 and the minus sign for E < 0. The symmetric combination
(i.e. E > 0) corresponds to the antibonding state and the the asymmetric combination to the
bonding one.
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Figure 2: LCAO-bandstructure of graphene.

3 Reciprocal Lattice of Graphene and the K⃗-Point

Draw the reciprocal lattice, the primitive vectors b⃗1 and b⃗2 and the 1. Brillouin zone (BZ). The
BZ is hexagonal. There are six corner points located at the BZ boundary. These points are
called K-points.

Show that
|⃗b1,2| =

4π

3a0
(19)

In Fig. 3 one K-point is shown with its respective wavevector K⃗ pointing along the x-axis.
Show that

K⃗ =
4π

3
√
3a0

e⃗x (20)

Use this result to prove that
E(K⃗) = 0 (21)

Once again the question, how large is EF ?

The eigenvalue is zero for all K-points, but how large is the dimension of the Eigenraum? In
order to answer this question, one has to have a look at Eq. 15. The answer is simple: The
‘Eigenraum’ is C2, i.e. b1 and b2 can be choosen arbitrarily. It is common practice (also in
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Figure 3: Reciprocal lattice of graphene with the 1st Brillouin zone (shaded). b⃗1 and b⃗2 are the primitive
lattice vectors.

view of the symmetry of the states at k⃗ = 0) to use normalized symmetric and antisymmetric
wavefunctions. If pz(x⃗) is the atomic pz orbital, then we can write ϕ1,2(x⃗) = pz(x⃗− x⃗1,2). The
symmetric ϕs and antisymmetric ϕa wavefunctions are:

ϕs,a =
1√
2
(pz(x⃗− x⃗1)± pz(x⃗− x⃗2)) (22)

There are two degenerate wavefunctions at k⃗ = K⃗:

ψK⃗,(s,a)(x⃗) =
∑
R⃗∈G

eiK⃗·R⃗ϕ(s,a)(x⃗− R⃗) (23)

The symmetric wavefunction is called the ‘antibonding’ state and the antisymmetric one is the
‘bonding’ state. However, at K⃗ these two states are degenerate. Therefore, this distinction is
unimportant here.

4 Carbon Nanotubes

The following figure, Fig. 4, shows the structure of carbon nanotubes. Fig. 4(a) is a so-called
‘armchair’ tube. This special type of nanotube is obtained from a slice of graphene cut along
the x-axis and then rolled into a seamless cylinder in the y direction. Hence, the tube axis is in
the x direction. Since nanotubes are seamless objects, the wavefunctions have to obey periodic
boundary conditions around the circumference.

The next task is to obtain the one-dimensional bandstructure for an armchair nanotube (NT)
using the two-dimensional bandstructure of graphene. The latter has to be sublemented by
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Figure 4: (a) shows a so-called armchair carbon nanotube, (b) a zig-zag tube, and (d) a general chiral
tube.

periodic boundary conditions. The armchair NT is obtained by cutting out a slice from the
graphene sheet oriented parallel to the x-axis. The slice has a width, which can be expressed
as the length of the so-called wrapping vector w⃗ oriented perpendicular to the tube axis. For an
armchair NT, the wrapping vector is of the form:

w⃗ = N (⃗a1 + a⃗2) (24)

where N is an integer. Usually, this is also denoted as an (N,N) tube, because the wrapping
vector is equal to N times a⃗1 plus N times a⃗2. Due to the periodic boundary conditions along
the y-direction, the wavevector component ky is quantized. Show that

ky(m) = m
2π

N
√
3a

, m ∈ Z (25)

The NT is one-dimensional. What is the lattice constant for an armchair NT? How many va-
lence electrons belong to the one-dimensional (1d) unit-cell? The answer is 4N and not 2N
as one might have expected! How long is the 1st Brillouin zone? Plot the 1d bandstructure
for a (10, 10) tube, i.e. N = 10 using Maple (or Mathematica). Since N = 10 there are 10

independent m values which are expected to give rise to 10 bands with energies >= 0 and 10

with<= 0. However, because 2N graphene unit-cells are cast into one armchair unit-cell, there
are 20 such bands with E > 0 and E < 0, each. The bands corresponding to index m and
−m are independent and degenerate, provided m ̸= 0 and m ̸= ±N . This can best be seen by
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drawing the allowed k⃗ in reciprocal space, see Fig. 6. Again, I ask the question, is an armchair
tube metallic or semiconducting? How large is the electric conductance of an ideal armchair
nanotube with ideal contacts?

E/ 1

kx
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20 "bonding" 
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Figure 5: Bandstructure of a (10, 10) armchair carbon nanotube. The shaded region is the 1. Brillouin
zone. Note, each band is doubly degenerate, except for the ones crossing E = 0 and the ones with
maximal and minimal energy. There are in total 40 bands.

If you still have fun, let us calculate the bandstructure of a so-called zig-zag tube. These tubes
have wrapping vectors of the form w⃗ = Na⃗1 or vice versa w⃗ = Na⃗2 denoted as (N, 0) or (0, N)

tubes, respectively. Calculate the 1d bandstructure of a (9, 0) tube and of (10, 0) tube. What is
the main difference?

5 Expansion around K⃗

Since the Fermi-energy is located at the K-points, the low energy properties can be well de-
scribed by expanding the wavefunctions around K⃗. We will first look at the energy eigenvalue
problem, i.e. Eq. 15. We write: k⃗ = K⃗ + κ⃗ and E(k⃗) = E(K⃗) + ϵ(κ⃗) = ϵ(κ⃗). Now ex-
press the function α(k⃗) as a linear expansion at K⃗. Then, instead of Eq. 15 one obtains the new
eigenvalue equation:(

ϵ(κ⃗) 3γ1a0
2

(κx + iκy)
3γ1a0

2
(κx − iκy) ϵ(κ⃗)

)(
b1
b2

)
=

(
0

0

)
(26)
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Figure 6: Shown is the 1. Brillouin zone in reciprocal space. The lines are the allowed (and independent)
k⃗ giving rise to the 1d-bandstructure of a (10, 10) armchair carbon nanotube.

The dispersion relation is obtained by setting the determinant to zero:

ϵ(κ⃗) = ±
(
3γ1a0
2

)
|κ⃗| (27)

Hence, we find a very simple relation. The velocity of a wavepaket is given by v⃗ = h̄−1∂ϵ/∂κ⃗.
It is idenpendent of direction and in magnitude given by:

vF =
3γ1a0
2h̄

(28)

The parameters are known: a0 = 1.42 Å, γ1 = 2.9 eV, and consequently vF ≈ 106 m/s. Using
the velocity vF we can write Eq. 27 in a much nicer form:

ϵ(κ⃗) = ±h̄vF |κ⃗| (29)

It is interesting to have a look at the structure of the eigenvectors (b1, b2). Show that this vector
can be written as:

(b1, b2) =
1√
2

(
±eiβ/2, e−iβ/2

)
(30)

where β = arg(κx + iκy). arg() denotes the angle of the complex vector κx + iκy. Recall
that b1,2 describe the amplitude of the pz orbitals for the two carbon atoms in the unit-cell.
In the following we would like to study matrix element of the form ⟨ϕκ⃗1 |ϕκ⃗2⟩. Such matrix
elements contain an overlap integral. If b(1,2) are chosen according to Eq. 30, then, one obtains
for example

|⟨ϕ|ϕ⟩|2 = 1 + γ0cos(β) (31)
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Since γ0 ≪ 1, the second part can be neglected. Neglecting the orbital part, we can represent
the wavefunction ϕ as a two-component vector with components b1 and b2, i.e. ϕ±

κ = (b1, b2),
where ± refers to the two possibilities. The + sign correpsonds to states with E > 0 and the −
sign to those with E < 0. Prove the following set of relations:

|⟨ϕ+
κ⃗ |⟨ϕ

+
κ⃗ ⟩|

2 = 1

|⟨ϕ−
κ⃗ |⟨ϕ

−
κ⃗ ⟩|

2 = 1

|⟨ϕ+
κ⃗ |⟨ϕ

−
−⃗κ

⟩|2 = 1

⟨ϕ+
κ⃗ |⟨ϕ

+
−⃗κ

⟩ = 0

⟨ϕ−
κ⃗ |⟨ϕ

−
−⃗κ

⟩ = 0 (32)

One can also obtain the angle dependence easily:∣∣⟨ϕp
κ⃗1
|ϕq

κ⃗2
⟩
∣∣2 = δpqcos

2(∆β/2) + (1− δpq)sin
2(∆β/2) , (33)

where (p, q) ∈ ± and ∆β = β2 − β1. These selection-rules are important for transport in
graphene and carbon nanotubes. For the latter, the former set of equations, Eq. 32, is partic-
ularly interesting. The result is schematically drawn in Fig. 7. The only allowed scattering

κ= 0

= 0

allowed

h = 1h = 1

h = -1 h = -1

Figure 7: Selection rules for intra- and interband transitions in carbon nanotubes close to K. h denotes
the ‘helicity’ of the pseudo-spin (see text). + refers to the upper band (E > 0) and − to the lower
(E < 0).

processes is (+, κ) ↔ (−,−κ). Though an interband transition, the direction of motion (and
the velocity) is retained in this scattering process. Hence, this scattering does not introduce an
electric resistance. Carbon nanotubes are therefore expected to have large mean-free paths and
very low electric resistances, which is indeed observed.
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There is a very interesting relation with spin physics. In fact, the two-component vector (b1, b2)
can be considered a pseudo-spin in the spin-basis, in which σz (Pauli matrix) is diagonal. That
is, (1, 0) is the up-spin eigenstate and (0, 1) the down-spin. The combinations (±1, 1)/

√
2 are

then eigenstates of σx with eigenvalues ±1. These two pseudo-spins belong to states which
propagate along the x-axis (see Eq. 30 for β = 0). Let us denote these two states as:

| ↑⟩x and | ↓⟩x . (34)

The pseudo-spin for a state with arbitrary wavevector κ⃗ is obtained by rotation about the z-axis
with angle β. This rotation is described by

Uz(β) =

(
eiβ/2 0

0 e−iβ/2

)
(35)

Applying this to the states | ↑⟩x, | ↓⟩x indeed gives the result of Eq. 30.

How do the wavefunctions look like in the vicinity of K⃗? The total wavefunction Ψ is the
product of ψK⃗ , ϕκ⃗ and the slow-varying function exp(iκ⃗ · x⃗):

Ψk⃗(x⃗) = ψK⃗(x⃗)ϕκ⃗ e
iκ⃗·x⃗, with k⃗ = K⃗ + κ⃗ (36)

This function is an approximation valid close to K⃗. It is a Bloch wavefunction and therefore
obeys the Bloch equation

Ψk⃗(x⃗+ R⃗) = eik⃗·R⃗ Ψk⃗(x⃗) (37)

Using the pseudo-spin we may also write the wavefunction as:

Ψk⃗(x⃗) = ψK⃗(x⃗)Uz(β)
{
eiκxx| ↑ or ↓⟩

}
(38)

The pseudo-spin is tight to the direction κ⃗, such that the spin is either parallel or antiparallel
to κ⃗. Hence, these ‘particle’ have a well defined helicity. This is like ‘neutrino’ physics! The
similarity goes even further, since the sign of the helicity is defined by the sign of the energy.
For each ‘particle’ with E > 0 there is an ‘antiparticle’ with E < 0, but with reversed helicity.
Unlike the neutrino, the ‘particle’ has positive helicity here! For further reading, see Paul
McEuen et al. Phys. Rev. Lett. 83, p5098 (1999).

6 Nanotube with a general wrapping vector

We will use the result of the previous section to derive the approximate bandstructure for carbon
nanotubes (NTs) valid in the vicinity of the Fermi energy. The wrapping vector w⃗ is assumed
to be

w⃗ = na⃗1 +ma⃗2 , (39)
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with n and m integers. This tube is denoted as an (n,m) tube. Decompose the wavevector κ⃗
into a component along the tube axis (k∥) and one perpendicular to it (k⊥). Accordingly:

κ⃗ = k∥e⃗∥ + k⊥e⃗⊥ with e⃗⊥ = w⃗/|w⃗| (40)

Because of the periodic boundary condition around the tube circumference (i.e. direction w⃗),
the transverse wavevector k⊥ will be quantized. Use Eq. 37 to show that the allowed k⊥ are
given by:

k⊥,p = 2π
(m− n)/3 + p

πd
where πd = |w⃗| (41)

Here p ∈Z and d denotes the tube diameter. Next, use this result and the dispersion relation
Eq. 29 to find the final result for the (approximate) one-dimensional bandstructure of carbon
NTs:

ϵp(k∥) = ±2h̄vF
d

√(
m− n

3
+ p

)2

+

(
k∥d

2

)2

(42)

Discuss this bandstructure. When is a NT metallic and when is it semiconducting? How large
is the bandgap? Draw the dispersion relations. The result is shown in Fig. 8.

If you are not exhausted yet, you may try to calculate the 1d-bandstructure for an arbitrary tube,
i.e. a (N,M)-tube. Such a tube has the wrapping vector w⃗ = Na⃗1 +Ma⃗2. Now, one first need
to calculate the unit vector e⃗∥ directed along the tube axis. Furthermore, we need to know the
1d lattice constant, i.e. the length of one unit-cell of the 1d nanotube. This can be described by
the unit-cell vector a⃗1d ∝ e⃗∥:

a⃗1d =
(2M +N )⃗a1 − (2N +M )⃗a2
GCD(2M +N, 2N +M)

, (43)

where GCD() denotes the greatest common divisor.

7 Closing remarks

If you have completed the whole programme yourself you can be very proud! You should
now understand Bloch’s theorem, the consequences of periodic boundary conditions, when a
material is a metal or a semiconductor. Moreover, you have participated in a problem which is
currently of great interest in research.
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Figure 8: Approximate one-dimensional bandstructure of carbon nanotubes (left) and corresponding
density-of-states (right). There are two kind of nanotubes: metallic and semiconducting one. A tube is
metallic, if (m− n) ∈ 3Z. The bandgap Eg of a semiconducting tube is inversely proportional to the
diameter and equal to Eg = 2E0/3, where E0 = 2h̄vF /d.
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Figure 9: One-dimensional bandstructures of different zig-zag tubes. Only the ‘upper’ part for E > 0

is shown.

The occurence of bands with no dispersion at all (infinite mass !) may appear surprising. But
looking again at the surface of the 2d bandstructure of graphene, one can indeed see directions
for which E = const, see Fig. 10.
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Figure 10: Again a plot of the banstructure of graphene. Indicated are special lines in k⃗-space for which
the energy is constant.


